Python toolkit for defining+simulating+visualizing+analyzing attractors, dynamical systems, iterated function systems, roulette curves, and more

Overview

Attractors

A small module that provides functions and classes for very efficient simulation and rendering of iterated function systems; dynamical systems, roulette curves, (strange) attractors, and so on.

Installation

Clone this repository and install with pip or another package manager. Alternatively, just clone/download the repo and use a relative import to include the scripts in your project.

Dependencies

  • Numba
  • NumPy
  • Matplotlib
  • SciPy (optional, only needed for image postprocessing)
  • nbdev (if building from source/developing)

Documentation

A brief overview of the project's main features is given below. For a more comprehensive API reference, documentation of specific classes, and functions, etc., see https://generic-github-user.github.io/attractors/.

Usage

attractors tries to conform to the principle of least astonishment wherever possible (and variable names, classes, parameters etc. aim to be readable), so using the tools should be fairly intuitive.

If we want to make a new RouletteCurve, for instance, the following will initialize one with the default parameters (including randomized arm lengths/rotation speeds):

R = RouletteCurve(num_sections=2)

Then, we can run simulate and render; function chaining is usually available since most class methods return the class instance ("self"):

R.simulate_accelerated(steps=10000).render(mode='hist', hist_args=dict(bins=150))

   

   

png

Other rendering modes are available; line will trace between each generated point.

RouletteCurve(num_sections=2).simulate_accelerated(steps=200).render(mode='line')

   

   

png

A softer render can be achieved using dist (and an optional falloff value that corresponds to the norm order when generating the brush).

RouletteCurve(num_sections=3).simulate_accelerated(steps=10000).render(mode='dist', falloff=3)
[[0.31748021 0.37475618 0.39893899 0.39893899 0.37475618]
 [0.37475618 0.52913368 0.65863376 0.65863376 0.52913368]
 [0.39893899 0.65863376 1.58740105 1.58740105 0.65863376]
 [0.39893899 0.65863376 1.58740105 1.58740105 0.65863376]
 [0.37475618 0.52913368 0.65863376 0.65863376 0.52913368]]






   

   

png

License

This project is licensed under GPL v2.0. The license file may be viewed here.

Tools

attractors is built using nbdev and Jupyter Lab, two open-source projects whose developers are owed much credit for making the development process highly efficient and enjoyable.

Owner
I work primarily on experiments & tools for machine learning, data analysis/visualization, and simulations. Check my README for a list of current projects.
JSNAPY example: Validate NAT policies

JSNAPY example: Validate NAT policies Overview This example will show how to use JSNAPy to make sure the expected NAT policy matches are taking place.

Calvin Remsburg 1 Jan 07, 2022
NorthPitch is a python soccer plotting library that sits on top of Matplotlib

NorthPitch is a python soccer plotting library that sits on top of Matplotlib.

Devin Pleuler 30 Feb 22, 2022
Python toolkit for defining+simulating+visualizing+analyzing attractors, dynamical systems, iterated function systems, roulette curves, and more

Attractors A small module that provides functions and classes for very efficient simulation and rendering of iterated function systems; dynamical syst

1 Aug 04, 2021
Drug design and development team HackBio internship is a virtual bioinformatics program that introduces students and professional to advanced practical bioinformatics and its applications globally.

-Nyokong. Drug design and development team HackBio internship is a virtual bioinformatics program that introduces students and professional to advance

4 Aug 04, 2022
Flipper Zero documentation repo

Flipper Zero Docs Participation To fix a bug or add something new to this repository, you need to open a pull-request. Also, on every page of the site

Flipper Zero (All Repositories will be public soon) 114 Dec 30, 2022
This package creates clean and beautiful matplotlib plots that work on light and dark backgrounds

This package creates clean and beautiful matplotlib plots that work on light and dark backgrounds. Inspired by the work of Edward Tufte.

Nico Schlömer 205 Jan 07, 2023
Collection of data visualizing projects through Tableau, Data Wrapper, and Power BI

Data-Visualization-Projects Collection of data visualizing projects through Tableau, Data Wrapper, and Power BI Indigenous-Brands-Social-Movements Pyt

Jinwoo(Roy) Yoon 1 Feb 05, 2022
Small binja plugin to import header file to types

binja-import-header (v1.0.0) Author: matteyeux Import header file to Binary Ninja types view Description: Binary Ninja plugin to import types from C h

matteyeux 15 Dec 10, 2022
A D3.js plugin that produces flame graphs from hierarchical data.

d3-flame-graph A D3.js plugin that produces flame graphs from hierarchical data. If you don't know what flame graphs are, check Brendan Gregg's post.

Martin Spier 740 Dec 29, 2022
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews

hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?

HoloViz 694 Jan 04, 2023
Piglet-shaders - PoC of custom shaders for Piglet

Piglet custom shader PoC This is a PoC for compiling Piglet fragment shaders usi

6 Mar 10, 2022
Visualize the training curve from the *.csv file (tensorboard format).

Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c

Luckky 7 Feb 23, 2022
Mattia Ficarelli 2 Mar 29, 2022
Python+Numpy+OpenGL: fast, scalable and beautiful scientific visualization

Python+Numpy+OpenGL: fast, scalable and beautiful scientific visualization

Glumpy 1.1k Jan 05, 2023
Visualize your pandas data with one-line code

PandasEcharts 简介 基于pandas和pyecharts的可视化工具 安装 pip 安装 $ pip install pandasecharts 源码安装 $ git clone https://github.com/gamersover/pandasecharts $ cd pand

陈华杰 2 Apr 13, 2022
Homework 2: Matplotlib and Data Visualization

Homework 2: Matplotlib and Data Visualization Overview These data visualizations were created for my introductory computer science course using Python

Sophia Huang 12 Oct 20, 2022
OpenStats is a library built on top of streamlit that extracts data from the Github API and shows the main KPIs

Open Stats Discover and share the KPIs of your OpenSource project. OpenStats is a library built on top of streamlit that extracts data from the Github

Pere Miquel Brull 4 Apr 03, 2022
Eulera Dashboard is an easy and intuitive way to get a quick feel of what’s happening on the world’s market.

an easy and intuitive way to get a quick feel of what’s happening on the world’s market ! Eulera dashboard is a tool allows you to monitor historical

Salah Eddine LABIAD 4 Nov 25, 2022
Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion

Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion

1 Jan 22, 2022
It's an application to calculate I from v and r. It can also plot a graph between V vs I.

Ohm-s-Law-Visualizer It's an application to calculate I from v and r using Ohm's Law. It can also plot a graph between V vs I. Story I'm doing my Unde

Sihab Sahariar 1 Nov 20, 2021