A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

Overview

ffcv ImageNet Training

A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get...

  • ...high accuracies on ImageNet
  • ...with as many lines of code as the PyTorch ImageNet example
  • ...in 1/10th the time.

Results

Train models more efficiently, either with 8 GPUs in parallel or by training 8 ResNet-18's at once.

See benchmark setup here: https://docs.ffcv.io/benchmarks.html.

Citation

If you use this setup in your research, cite:

@misc{leclerc2022ffcv,
    author = {Guillaume Leclerc and Andrew Ilyas and Logan Engstrom and Sung Min Park and Hadi Salman and Aleksander Madry},
    title = {ffcv},
    year = {2022},
    howpublished = {\url{https://github.com/libffcv/ffcv/}},
    note = {commit xxxxxxx}
}

Configurations

The configuration files corresponding to the above results are:

Link to Config top_1 top_5 # Epochs Time (mins) Architecture Setup
Link 0.784 0.941 88 77.2 ResNet-50 8 x A100
Link 0.780 0.937 56 49.4 ResNet-50 8 x A100
Link 0.772 0.932 40 35.6 ResNet-50 8 x A100
Link 0.766 0.927 32 28.7 ResNet-50 8 x A100
Link 0.756 0.921 24 21.7 ResNet-50 8 x A100
Link 0.738 0.908 16 14.9 ResNet-50 8 x A100
Link 0.724 0.903 88 187.3 ResNet-18 1 x A100
Link 0.713 0.899 56 119.4 ResNet-18 1 x A100
Link 0.706 0.894 40 85.5 ResNet-18 1 x A100
Link 0.700 0.889 32 68.9 ResNet-18 1 x A100
Link 0.688 0.881 24 51.6 ResNet-18 1 x A100
Link 0.669 0.868 16 35.0 ResNet-18 1 x A100

Training Models

First pip install the requirements file in this directory:

pip install -r requirements.txt

Then, generate an ImageNet dataset; make the dataset used for the results above with the following command (IMAGENET_DIR should point to a PyTorch style ImageNet dataset:

# Required environmental variables for the script:
export IMAGENET_DIR=/path/to/pytorch/format/imagenet/directory/
export WRITE_DIR=/your/path/here/

# Starting in the root of the Git repo:
cd examples;

# Serialize images with:
# - 500px side length maximum
# - 50% JPEG encoded, 90% raw pixel values
# - quality=90 JPEGs
./write_dataset.sh 500 0.50 90

Then, choose a configuration from the configuration table. With the config file path in hand, train as follows:

# 8 GPU training (use only 1 for ResNet-18 training)
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7

# Set the visible GPUs according to the `world_size` configuration parameter
# Modify `data.in_memory` and `data.num_workers` based on your machine
python train_imagenet.py --config-file rn50_configs/<your config file>.yaml \
    --data.train_dataset=/path/to/train/dataset.ffcv \
    --data.val_dataset=/path/to/val/dataset.ffcv \
    --data.num_workers=12 --data.in_memory=1 \
    --logging.folder=/your/path/here

Adjust the configuration by either changing the passed YAML file or by specifying arguments via fastargs (i.e. how the dataset paths were passed above).

Training Details

System setup. We trained on p4.24xlarge ec2 instances (8 A100s).

Dataset setup. Generally larger side length will aid in accuracy but decrease throughput:

  • ResNet-50 training: 50% JPEG 500px side length
  • ResNet-18 training: 10% JPEG 400px side length

Algorithmic details. We use a standard ImageNet training pipeline (à la the PyTorch ImageNet example) with only the following differences/highlights:

  • SGD optimizer with momentum and weight decay on all non-batchnorm parameters
  • Test-time augmentation over left/right flips
  • Progressive resizing from 160px to 192px: 160px training until 75% of the way through training (by epochs), then 192px until the end of training.
  • Validation set sizing according to "Fixing the train-test resolution discrepancy": 224px at test time.
  • Label smoothing
  • Cyclic learning rate schedule

Refer to the code and configuration files for a more exact specification. To obtain configurations we first gridded for hyperparameters at a 30 epoch schedule. Fixing these parameters, we then varied only the number of epochs (stretching the learning rate schedule across the number of epochs as motivated by Budgeted Training) and plotted the results above.

FAQ

Why is the first epoch slow?

The first epoch can be slow for the first epoch if the dataset hasn't been cached in memory yet.

What if I can't fit my dataset in memory?

See this guide here.

Other questions

Please open up a GitHub discussion for non-bug related questions; if you find a bug please report it on GitHub issues.

Owner
FFCV
FFCV
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
Some useful blender add-ons for SMPL skeleton's poses and global translation.

Blender add-ons for SMPL skeleton's poses and trans There are two blender add-ons for SMPL skeleton's poses and trans.The first is for making an offli

犹在镜中 154 Jan 04, 2023
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022