Graph parsing approach to structured sentiment analysis.

Overview

Fine-grained Sentiment Analysis as Dependency Graph Parsing

This repository contains the code and datasets described in following paper: Fine-grained Sentiment Analysis as Dependency Graph Parsing.

Problem description

Fine-grained sentiment analysis can be theoretically cast as an information extraction problem in which one attempts to find all of the opinion tuples $O = O_i,\ldots,O_n$ in a text. Each opinion $O_i$ is a tuple $(h, t, e, p)$

where $h$ is a \textbf {holder} who expresses a \textbf{polarity} $p$ towards a \textbf{target} $t$ through a \textbf{sentiment expression} $e$, implicitly defining the relationships between these elements.

The two examples below (first in English, then in Basque) show the conception of sentiment graphs.

multilingual example

Rather than treating this as a sequence-labeling task, we can treat it as a bilexical dependency graph prediction task, although some decisions must me made. We create two versions (a) head-first and (b) head-final, shown below:

bilexical

Requirements

  1. python3
  2. pytorch
  3. matplotlib
  4. sklearn
  5. gensim
  6. numpy
  7. h5py
  8. transformers
  9. tqdm

Data collection and preprocessing

We provide the preprocessed bilexical sentiment graph data as conllu files in 'data/sent_graphs'. If you want to run the experiments, you can use this data directly. If, however, you are interested in how we create the data, you can use the following steps.

The first step is to download and preprocess the data, and then create the sentiment dependency graphs. The original data can be downloaded and converted to json files using the scripts found at https://github.com/jerbarnes/finegrained_data. After creating the json files for the finegrained datasets following the instructions, you can then place the directories (renamed to 'mpqa', 'ds_unis', 'norec_fine', 'eu', 'ca') in the 'data' directory.

After that, you can use the available scripts to create the bilexical dependency graphs, as mentioned in the paper.

cd data
./create_english_sent_graphs.sh
./create_euca_sent_graphs.sh
./create_norec_sent_graphs
cd ..

Experimental results

To reproduce the results, first you will need to download the word vectors used:

mkdir vectors
cd vectors
wget http://vectors.nlpl.eu/repository/20/58.zip
wget http://vectors.nlpl.eu/repository/20/32.zip
wget http://vectors.nlpl.eu/repository/20/34.zip
wget http://vectors.nlpl.eu/repository/20/18.zip
cd ..

You will similarly need to extract mBERT token representations for all datasets.

./do_bert.sh

Finally, you can run the SLURM scripts to reproduce the experimental results.

./scripts/run_base.sh
./scripts/run_bert.sh
Owner
Jeremy Barnes
I'm a professor of Natural Language Processing. My interests are in multi-linguality and incorporating diverse sources of information into neural networks.
Jeremy Barnes
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
This is a beginner-friendly repo to make a collection of some unique and awesome projects. Everyone in the community can benefit & get inspired by the amazing projects present over here.

Awesome-Projects-Collection Quality over Quantity :) What to do? Add some unique and amazing projects as per your favourite tech stack for the communi

Rohan Sharma 178 Jan 01, 2023
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
Official repository for the paper F, B, Alpha Matting

FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s

Marco Forte 404 Jan 05, 2023
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023