[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Overview

Visual-Reasoning-eXplanation

[CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts]

Project Page | Video | Paper

Editor

Figure: An example result with the proposed VRX. To explain the prediction (i.e., fire engine and not alternatives like ambulance), VRX provides both visual and structural clues.

A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts
Yunhao Ge, Yao Xiao, Zhi Xu, Meng Zheng, Srikrishna Karanam, Terrence Chen, Laurent Itti, Ziyan Wu
IEEE/ CVF International Conference on Computer Vision and Pattern Recognition (CVPR), 2021

We considered the challenging problem of interpreting the reasoning logic of a neural network decision. We propose a novel framework to interpret neural networks which extracts relevant class-specific visual concepts and organizes them using structural concepts graphs based on pairwise concept relationships. By means of knowledge distillation, we show VRX can take a step towards mimicking the reasoning process of NNs and provide logical, concept-level explanations for final model decisions. With extensive experiments, we empirically show VRX can meaningfully answer “why” and “why not” questions about the prediction, providing easy-to-understand insights about the reasoning process. We also show that these insights can potentially provide guidance on improving NN’s performance.

Editor

Figure: Examples of representing images as structural concept graph.

Editor

Figure: Pipeline for Visual Reasoning Explanation framework.

Thanks for a re-implementation from sssufmug, we added more features and finish the whole pipeline.

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/gyhandy/Visual-Reasoning-eXplanation.git
cd Visual-Reasoning-eXplanation
  • Dependencies
pip install -r requirements.txt

Datasets

  • We use a subset of ImageNet as our source data. There are intrested classes which want to do reasoning, such as fire angine, ambulance and school bus, and also other random images for discovering concepts. You can download the source data that we used in our paper here: source [http://ilab.usc.edu/andy/dataset/source.zip]

  • Input files for training GNN and doing reasoning. You can get these data by doing discover concepts and match concepts yourself, but we also provide those files to help you doing inference directly. You can download the result data here: result[http://ilab.usc.edu/andy/dataset/result.zip]

Datasets Preprocess

Unzip source.zip as well as result.zip, and then place them in ./source and ./result. If you only want to do inference, you can skip discover concept, match concept and training Structural Concept Graph (SCG).

Discover concept

For more information about discover concept, you can refer to ACE: Towards Automatic Concept Based Explanations. We use the pretrained model provided by tensorflow to discover cencept. With default setting you can simply run

python3 discover_concept.py

If you want to do this step with a custom model, you should write a wrapper for it containing the following methods:

run_examples(images, BOTTLENECK_LAYER): which basically returens the activations of the images in the BOTTLENECK_LAYER. 'images' are original images without preprocessing (float between 0 and 1)
get_image_shape(): returns the shape of the model's input
label_to_id(CLASS_NAME): returns the id of the given class name.
get_gradient(activations, CLASS_ID, BOTTLENECK_LAYER): computes the gradient of the CLASS_ID logit in the logit layer with respect to activations in the BOTTLENECK_LAYER.

If you want to discover concept with GradCam, please also implement a 'gradcam.py' for your model and place it into ./src. Then run:

python3 discover_concept.py --model_to_run YOUR_LOCAL_PRETRAINED_MODEL_NAME --model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --labels_path LABEL_PATH_OF_YOUR_MODEL_LABEL --use_gradcam TRUE/FALSE

Match concept

This step will use the concepts you discovered in last step to match new images. If you want to match your own images, please put them into ./source and create a new folder named IMAGE_CLASS_NAME. Then run:

python3 macth_concept.py --model_to_run YOUR_LOCAL_PRETRAINED_MODEL_NAME --model_path YOUR_LOCAL_PATH_OF_PRETRAINED_MODEL --labels_path LABEL_PATH_OF_YOUR_MODEL_LABEL --use_gradcam TRUE/FALSE

Training Structural Concept Graph (SCG)

python3 VR_training_XAI.py

Then you can find the checkpoints of model in ./result/model.

Reasoning a image

For images you want to do reasoning, you should first doing match concept to extract concept knowledge. Once extracted graph knowledge for SCG, you can do the inference. For example, if you want to inference ./source/fire_engine/n03345487_19835.JPEG, the "img_class" is "ambulance" and "img_idx" is 10367, then run:

python3 Xception_WhyNot.py --img_class fire_engine --img_idx 19835

Some visualize results

Editor
Editor
Editor

Contact / Cite

Got Questions? We would love to answer them! Please reach out by email! You may cite us in your research as:

@inproceedings{ge2021peek,
  title={A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts},
  author={Ge, Yunhao and Xiao, Yao and Xu, Zhi and Zheng, Meng and Karanam, Srikrishna and Chen, Terrence and Itti, Laurent and Wu, Ziyan},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={2195--2204},
  year={2021}
}

We will post other relevant resources, implementations, applications and extensions of this work here. Please stay tuned

Owner
Andy_Ge
Ph.D. Student in USC, interested in Computer Vision, Machine Learning, and AGI
Andy_Ge
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022