GULAG: GUessing LAnGuages with neural networks

Related tags

Deep Learninggulag
Overview

GULAG: GUessing LAnGuages with neural networks

Main Code style: black Checked with mypy GitHub license GitHub stars

cannon on sparrows

Classify languages in text via neural networks.

> Привет! My name is Egor. Was für ein herrliches Frühlingswetter, хутка расцвітуць дрэвы.
ru -- Привет
en -- My name is Egor
de -- Was für ein herrliches Frühlingswetter
be -- хутка расцвітуць дрэвы

Usage

Use requirements.txt to install necessary dependencies:

pip install -r requirements.txt

After that you can either train model:

python -m src.main train --gin-file config/train.gin

Or run inference:

python -m src.main infer

Training

All training details are covered by PyTorch-Lightning. There are:

Both modules have explicit documentation, see source files for usage details.

Dataset

Since extracting languages from a text is a kind of synthetic task, then there is no exact dataset of that. A possible approach to handle this is to use general multilingual corpses to create a synthetic dataset with multiple languages per one text. Although there is a popular mC4 dataset with large texts in over 100 languages. It is too large for this pet project. Therefore, I used wikiann dataset that also supports over 100 languages including Russian, Ukrainian, Belarusian, Kazakh, Azerbaijani, Armenian, Georgian, Hebrew, English, and German. But this dataset consists of only small sentences for NER classification that make it more unnatural.

Synthetic data

To create a dataset with multiple languages per example, I use the following sampling strategy:

  1. Select number of languages in next example
  2. Select number of sentences for each language
  3. Sample sentences, shuffle them and concatenate into single text

For exact details about sampling algorithm see generate_example method.

This strategy allows training on a large non-repeating corpus. But for proper evaluation during training, we need a deterministic subset of data. For that, we can pre-generate a bunch of texts and then reuse them on each validation.

Model

As a training objective, I selected per-token classification. This automatically allows not only classifying languages in the text, but also specifying their ranges.

The model consists of two parts:

  1. The backbone model that embeds tokens into vectors
  2. Head classifier that predicts classes by embedding vector

As backbone model I selected vanilla BERT. This model already pretrained on large multilingual corpora including non-popular languages. During training on a target task, weights of BERT were frozen to enhance speed.

Head classifier is a simple MLP, see TokenClassifier for details.

Configuration

To handle big various of parameters, I used gin-config. config folder contains all configurations split by modules that used them.

Use --gin-file CLI argument to specify config file and --gin-param to manually overwrite some values. For example, to run debug mode on a small subset with a tiny model for 10 steps use

python -m src.main train --gin-file config/debug.gin --gin-param="train.n_steps = 10"

You can also use jupyter notebook to run training, this is a convenient way to train with Google Colab. See train.ipynb.

Artifacts

All training logs and artifacts are stored on W&B. See voudy/gulag for information about current runs, their losses and metrics. Any of the presented models may be used on inference.

Inference

In inference mode, you may play with the model to see whether it is good or not. This script requires a W&B run path where checkpoint is stored and checkpoint name. After that, you can interact with a model in a loop.

The final model is stored in voudy/gulag/a55dbee8 run. It was trained for 20 000 steps for ~9 hours on Tesla T4.

$ python -m src.main infer --wandb "voudy/gulag/a55dbee8" --ckpt "step_20000.ckpt"
...
Enter text to classify languages (Ctrl-C to exit):
> İrəli! Вперёд! Nach vorne!
az -- İrəli
ru -- Вперёд
de -- Nach vorne
Enter text to classify languages (Ctrl-C to exit):
> Давайте жити дружно
uk -- Давайте жити дружно
> ...

For now, text preprocessing removes all punctuation and digits. It makes the data more robust. But restoring them back is a straightforward technical work that I was lazy to do.

Of course, you can use model from the Jupyter Notebooks, see infer.ipynb

Further work

Next steps may include:

  • Improved dataset with more natural examples, e.g. adopt mC4.
  • Better tokenization to handle rare languages, this should help with problems on the bounds of similar texts.
  • Experiments with another embedders, e.g. mGPT-3 from Sber covers all interesting languages, but requires technical work to adopt for classification task.
Owner
Egor Spirin
DL guy
Egor Spirin
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023