GULAG: GUessing LAnGuages with neural networks

Related tags

Deep Learninggulag
Overview

GULAG: GUessing LAnGuages with neural networks

Main Code style: black Checked with mypy GitHub license GitHub stars

cannon on sparrows

Classify languages in text via neural networks.

> Привет! My name is Egor. Was für ein herrliches Frühlingswetter, хутка расцвітуць дрэвы.
ru -- Привет
en -- My name is Egor
de -- Was für ein herrliches Frühlingswetter
be -- хутка расцвітуць дрэвы

Usage

Use requirements.txt to install necessary dependencies:

pip install -r requirements.txt

After that you can either train model:

python -m src.main train --gin-file config/train.gin

Or run inference:

python -m src.main infer

Training

All training details are covered by PyTorch-Lightning. There are:

Both modules have explicit documentation, see source files for usage details.

Dataset

Since extracting languages from a text is a kind of synthetic task, then there is no exact dataset of that. A possible approach to handle this is to use general multilingual corpses to create a synthetic dataset with multiple languages per one text. Although there is a popular mC4 dataset with large texts in over 100 languages. It is too large for this pet project. Therefore, I used wikiann dataset that also supports over 100 languages including Russian, Ukrainian, Belarusian, Kazakh, Azerbaijani, Armenian, Georgian, Hebrew, English, and German. But this dataset consists of only small sentences for NER classification that make it more unnatural.

Synthetic data

To create a dataset with multiple languages per example, I use the following sampling strategy:

  1. Select number of languages in next example
  2. Select number of sentences for each language
  3. Sample sentences, shuffle them and concatenate into single text

For exact details about sampling algorithm see generate_example method.

This strategy allows training on a large non-repeating corpus. But for proper evaluation during training, we need a deterministic subset of data. For that, we can pre-generate a bunch of texts and then reuse them on each validation.

Model

As a training objective, I selected per-token classification. This automatically allows not only classifying languages in the text, but also specifying their ranges.

The model consists of two parts:

  1. The backbone model that embeds tokens into vectors
  2. Head classifier that predicts classes by embedding vector

As backbone model I selected vanilla BERT. This model already pretrained on large multilingual corpora including non-popular languages. During training on a target task, weights of BERT were frozen to enhance speed.

Head classifier is a simple MLP, see TokenClassifier for details.

Configuration

To handle big various of parameters, I used gin-config. config folder contains all configurations split by modules that used them.

Use --gin-file CLI argument to specify config file and --gin-param to manually overwrite some values. For example, to run debug mode on a small subset with a tiny model for 10 steps use

python -m src.main train --gin-file config/debug.gin --gin-param="train.n_steps = 10"

You can also use jupyter notebook to run training, this is a convenient way to train with Google Colab. See train.ipynb.

Artifacts

All training logs and artifacts are stored on W&B. See voudy/gulag for information about current runs, their losses and metrics. Any of the presented models may be used on inference.

Inference

In inference mode, you may play with the model to see whether it is good or not. This script requires a W&B run path where checkpoint is stored and checkpoint name. After that, you can interact with a model in a loop.

The final model is stored in voudy/gulag/a55dbee8 run. It was trained for 20 000 steps for ~9 hours on Tesla T4.

$ python -m src.main infer --wandb "voudy/gulag/a55dbee8" --ckpt "step_20000.ckpt"
...
Enter text to classify languages (Ctrl-C to exit):
> İrəli! Вперёд! Nach vorne!
az -- İrəli
ru -- Вперёд
de -- Nach vorne
Enter text to classify languages (Ctrl-C to exit):
> Давайте жити дружно
uk -- Давайте жити дружно
> ...

For now, text preprocessing removes all punctuation and digits. It makes the data more robust. But restoring them back is a straightforward technical work that I was lazy to do.

Of course, you can use model from the Jupyter Notebooks, see infer.ipynb

Further work

Next steps may include:

  • Improved dataset with more natural examples, e.g. adopt mC4.
  • Better tokenization to handle rare languages, this should help with problems on the bounds of similar texts.
  • Experiments with another embedders, e.g. mGPT-3 from Sber covers all interesting languages, but requires technical work to adopt for classification task.
Owner
Egor Spirin
DL guy
Egor Spirin
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022