GULAG: GUessing LAnGuages with neural networks

Related tags

Deep Learninggulag
Overview

GULAG: GUessing LAnGuages with neural networks

Main Code style: black Checked with mypy GitHub license GitHub stars

cannon on sparrows

Classify languages in text via neural networks.

> Привет! My name is Egor. Was für ein herrliches Frühlingswetter, хутка расцвітуць дрэвы.
ru -- Привет
en -- My name is Egor
de -- Was für ein herrliches Frühlingswetter
be -- хутка расцвітуць дрэвы

Usage

Use requirements.txt to install necessary dependencies:

pip install -r requirements.txt

After that you can either train model:

python -m src.main train --gin-file config/train.gin

Or run inference:

python -m src.main infer

Training

All training details are covered by PyTorch-Lightning. There are:

Both modules have explicit documentation, see source files for usage details.

Dataset

Since extracting languages from a text is a kind of synthetic task, then there is no exact dataset of that. A possible approach to handle this is to use general multilingual corpses to create a synthetic dataset with multiple languages per one text. Although there is a popular mC4 dataset with large texts in over 100 languages. It is too large for this pet project. Therefore, I used wikiann dataset that also supports over 100 languages including Russian, Ukrainian, Belarusian, Kazakh, Azerbaijani, Armenian, Georgian, Hebrew, English, and German. But this dataset consists of only small sentences for NER classification that make it more unnatural.

Synthetic data

To create a dataset with multiple languages per example, I use the following sampling strategy:

  1. Select number of languages in next example
  2. Select number of sentences for each language
  3. Sample sentences, shuffle them and concatenate into single text

For exact details about sampling algorithm see generate_example method.

This strategy allows training on a large non-repeating corpus. But for proper evaluation during training, we need a deterministic subset of data. For that, we can pre-generate a bunch of texts and then reuse them on each validation.

Model

As a training objective, I selected per-token classification. This automatically allows not only classifying languages in the text, but also specifying their ranges.

The model consists of two parts:

  1. The backbone model that embeds tokens into vectors
  2. Head classifier that predicts classes by embedding vector

As backbone model I selected vanilla BERT. This model already pretrained on large multilingual corpora including non-popular languages. During training on a target task, weights of BERT were frozen to enhance speed.

Head classifier is a simple MLP, see TokenClassifier for details.

Configuration

To handle big various of parameters, I used gin-config. config folder contains all configurations split by modules that used them.

Use --gin-file CLI argument to specify config file and --gin-param to manually overwrite some values. For example, to run debug mode on a small subset with a tiny model for 10 steps use

python -m src.main train --gin-file config/debug.gin --gin-param="train.n_steps = 10"

You can also use jupyter notebook to run training, this is a convenient way to train with Google Colab. See train.ipynb.

Artifacts

All training logs and artifacts are stored on W&B. See voudy/gulag for information about current runs, their losses and metrics. Any of the presented models may be used on inference.

Inference

In inference mode, you may play with the model to see whether it is good or not. This script requires a W&B run path where checkpoint is stored and checkpoint name. After that, you can interact with a model in a loop.

The final model is stored in voudy/gulag/a55dbee8 run. It was trained for 20 000 steps for ~9 hours on Tesla T4.

$ python -m src.main infer --wandb "voudy/gulag/a55dbee8" --ckpt "step_20000.ckpt"
...
Enter text to classify languages (Ctrl-C to exit):
> İrəli! Вперёд! Nach vorne!
az -- İrəli
ru -- Вперёд
de -- Nach vorne
Enter text to classify languages (Ctrl-C to exit):
> Давайте жити дружно
uk -- Давайте жити дружно
> ...

For now, text preprocessing removes all punctuation and digits. It makes the data more robust. But restoring them back is a straightforward technical work that I was lazy to do.

Of course, you can use model from the Jupyter Notebooks, see infer.ipynb

Further work

Next steps may include:

  • Improved dataset with more natural examples, e.g. adopt mC4.
  • Better tokenization to handle rare languages, this should help with problems on the bounds of similar texts.
  • Experiments with another embedders, e.g. mGPT-3 from Sber covers all interesting languages, but requires technical work to adopt for classification task.
Owner
Egor Spirin
DL guy
Egor Spirin
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023