Approximate Nearest Neighbor Search for Sparse Data in Python!

Related tags

Data Analysispysparnn
Overview

PySparNN

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Out of the box, PySparNN supports Cosine Distance (i.e. 1 - cosine_similarity).

PySparNN benefits:

  • Designed to be efficient on sparse data (memory & cpu).
  • Implemented leveraging existing python libraries (scipy & numpy).
  • Easily extended with other metrics: Manhattan, Euclidian, Jaccard, etc.
  • Supports incremental insertion of elements.

If your data is NOT SPARSE - please consider faiss or annoy. They use similar methods and I am a big fan of both. You should expect better performance on dense vectors from both of those projects.

The most comparable library to PySparNN is scikit-learn's LSHForest module. As of this writing, PySparNN is ~4x faster on the 20newsgroups dataset (as a sparse vector). A more robust benchmarking on sparse data is desired. Here is the comparison. Here is another comparison on the larger Enron email dataset.

Example Usage

Simple Example

import pysparnn.cluster_index as ci

import numpy as np
from scipy.sparse import csr_matrix

features = np.random.binomial(1, 0.01, size=(1000, 20000))
features = csr_matrix(features)

# build the search index!
data_to_return = range(1000)
cp = ci.MultiClusterIndex(features, data_to_return)

cp.search(features[:5], k=1, return_distance=False)
>> [[0], [1], [2], [3], [4]]

Text Example

import pysparnn.cluster_index as ci

from sklearn.feature_extraction.text import TfidfVectorizer

data = [
    'hello world',
    'oh hello there',
    'Play it',
    'Play it again Sam',
]    

tv = TfidfVectorizer()
tv.fit(data)

features_vec = tv.transform(data)

# build the search index!
cp = ci.MultiClusterIndex(features_vec, data)

# search the index with a sparse matrix
search_data = [
    'oh there',
    'Play it again Frank'
]

search_features_vec = tv.transform(search_data)

cp.search(search_features_vec, k=1, k_clusters=2, return_distance=False)
>> [['oh hello there'], ['Play it again Sam']]

Requirements

PySparNN requires numpy and scipy. Tested with numpy 1.11.2 and scipy 0.18.1.

Installation

# clone pysparnn
cd pysparnn 
pip install -r requirements.txt 
python setup.py install

How PySparNN works

Searching for a document in an collection of D documents is naively O(D) (assuming documents are constant sized).

However! we can create a tree structure where the first level is O(sqrt(D)) and each of the leaves are also O(sqrt(D)) - on average.

We randomly pick sqrt(D) candidate items to be in the top level. Then -- each document in the full list of D documents is assigned to the closest candidate in the top level.

This breaks up one O(D) search into two O(sqrt(D)) searches which is much much faster when D is big!

This generalizes to h levels. The runtime becomes: O(h * h_root(D))

Further Information

http://nlp.stanford.edu/IR-book/html/htmledition/cluster-pruning-1.html

See the CONTRIBUTING file for how to help out.

License

PySparNN is BSD-licensed. We also provide an additional patent grant.

Owner
Meta Research
Meta Research
Program that predicts the NBA mvp based on data from previous years.

NBA MVP Predictor A machine learning model using RandomForest Regression that predicts NBA MVP's using player data. Explore the docs » View Demo · Rep

Muhammad Rabee 1 Jan 21, 2022
PyChemia, Python Framework for Materials Discovery and Design

PyChemia, Python Framework for Materials Discovery and Design PyChemia is an open-source Python Library for materials structural search. The purpose o

Materials Discovery Group 61 Oct 02, 2022
Useful tool for inserting DataFrames into the Excel sheet.

PyCellFrame Insert Pandas DataFrames into the Excel sheet with a bunch of conditions Install pip install pycellframe Usage Examples Let's suppose that

Luka Sosiashvili 1 Feb 16, 2022
VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

André Rodrigues 2 Feb 14, 2022
In this tutorial, raster models of soil depth and soil water holding capacity for the United States will be sampled at random geographic coordinates within the state of Colorado.

Raster_Sampling_Demo (Resulting graph of this demo) Background Sampling values of a raster at specific geographic coordinates can be done with a numbe

2 Dec 13, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
Python Project on Pro Data Analysis Track

Udacity-BikeShare-Project: Python Project on Pro Data Analysis Track Basic Data Exploration with pandas on Bikeshare Data Basic Udacity project using

Belal Mohammed 0 Nov 10, 2021
Display the behaviour of a realtime program with a scope or logic analyser.

1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to

Peter Hinch 17 Dec 05, 2022
A simple and efficient tool to parallelize Pandas operations on all available CPUs

Pandaral·lel Without parallelization With parallelization Installation $ pip install pandarallel [--upgrade] [--user] Requirements On Windows, Pandara

Manu NALEPA 2.8k Dec 31, 2022
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
Python beta calculator that retrieves stock and market data and provides linear regressions.

Stock and Index Beta Calculator Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resa

sammuhrai 4 Jul 29, 2022
Pip install minimal-pandas-api-for-polars

Minimal Pandas API for Polars Install From PyPI: pip install minimal-pandas-api-for-polars Example Usage (see tests/test_minimal_pandas_api_for_polars

Austin Ray 6 Oct 16, 2022
Transform-Invariant Non-Negative Matrix Factorization

Transform-Invariant Non-Negative Matrix Factorization A comprehensive Python package for Non-Negative Matrix Factorization (NMF) with a focus on learn

EMD Group 6 Jul 01, 2022
A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

TennisBusinessIntelligenceProject - A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

carlo paladino 1 Jan 02, 2022
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-

International Business Machines 293 Dec 29, 2022
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
Tools for working with MARC data in Catalogue Bridge.

catbridge_tools Tools for working with MARC data in Catalogue Bridge. Borrows heavily from PyMarc

1 Nov 11, 2021
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
CubingB is a timer/analyzer for speedsolving Rubik's cubes, with smart cube support

CubingB is a timer/analyzer for speedsolving Rubik's cubes (and related puzzles). It focuses on supporting "smart cubes" (i.e. bluetooth cubes) for recording the exact moves of a solve in real time.

Zach Wegner 5 Sep 18, 2022
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022