Curso práctico: NLP de cero a cien 🤗

Overview

Curso Práctico: NLP de cero a cien

Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utilizando una de las bibliotecas más populares en este campo: Hugging Face. Independientemente de tus conocimientos actuales, terminarás el curso hablando tranquilamente de Transformers, Word Embeddings, modelos secuenciales, mecanismos de atención y modelado del lenguaje.

➡️ Versión web: https://somosnlp.org/nlp-de-cero-a-cien

Calendario

El curso está dividido en 7 sesiones que se impartirán cada dos martes a las 18h CET a partir del 13 de Julio. Dependiendo de tu nivel actual puedes unirte al curso en la sesión que quieras.

  • 13 Jul: Introducción al NLP y Word Embeddings
  • 27 Jul: Modelos secuenciales (RNNs, LSTMs)
  • 10 Ag: Transformers I. Arquitectura Transformer y mecanismo de atención
  • 24 Ag: Transformers II. Aprendizaje por transferencia
  • 7 Sep: Transformers III. Generación de texto
  • 21 Sep: Transformers IV. Modelado del lenguaje
  • 5 Oct: Demos de NLP con 🤗 Spaces

Cada sesión durará 30 minutos y habrá 10 minutos extra dedicados a resolver dudas de los asistentes.

¿Te has perdido una sesión? ¡No pasa nada!

  • Subimos las grabaciones a esta playlist de YouTube.
  • En este repositorio puedes consultar todo el material del curso y recursos extra.
  • Puedes preguntar tus dudas en el canal #nlp-de-cero-a-cien de nuesta comunidad de Discord.

Formadores

Por orden alfabético:

María Grandury: María es una Ingeniera e Investigadora de Machine Learning enfocada en NLP y en la fiabilidad de la IA (i.e. XAI, ataques adversarios). Estudió el doble grado de Matemáticas y Física y actualmente trabaja en neurocat, donde desarrolla una herramienta para explicar y evaluar la estabilidad de cualquier modelo de ML. María forma parte de Women in AI & Robotics cuya misión es promover una IA inclusiva y responsable. También fundó la comunidad Somos NLP con el objetivo de acelerar el avance del NLP en español.

Manuel Romero: Manuel tiene una "mente inquieta y un alma emprendedora". Estudió ingeniería informática y cuenta con casi 10 años de experiencia como desarrollador back-end y arquitecto de software. Además, es un SCRUM Master y Product Owner certificado. Actualmente trabaja en Narrativa como Ingeniero Senior de Inteligencia Artificial especializado en NLP/NLG y es el mayor contribuidor del Model Hub de Hugging Face con más de 200 modelos.

Omar Sanseviero: Omar es un Ingeniero de Machine Learning con 7 años de experiencia en la industria de la tecnología. Actualmente trabaja en Hugging Face en el equipo de open-source democratizando el uso de Machine Learning. Previamente, Omar trabajó como Ingeniero de Software en Google en Suiza en el equipo de Assistant. Omar es un apasionado de la educación y co-fundó AI Learners, una comunidad de personas que buscan aprender y discutir temas sobre Inteligencia Artificial y sus diferentes aplicaciones.

Lewis Tunstall: Lewis es Ingeniero de Machine Learning en el equipo de open-source de Hugging Face. Tiene varios años de experiencia construyendo aplicaciones de Machine Learning para startups y empresas en los dominios de NLP, análisis de datos topológicos y series temporales. Tiene un doctorado en física teórica y ha ocupado puestos de investigación en Australia, Estados Unidos y Suiza. Su trabajo actual se centra en el desarrollo de herramientas para la comunidad de NLP y en la formación de las personas para que las utilicen de forma eficaz.

Inscripción

El curso es gratuito y via online. Al registrarte en Eventbrite recibirás un email de confirmación y otro el día de cada sesión para poder entrar en el workshop.

Organizan Somos NLP 🤗 y Spain AI

Somos NLP 🤗

Somos NLP es la red internacional de profesionales, investigadores y estudiantes acelerando el avance del NLP en español. Nació como la comunidad de hispanohablantes de la iniciativa "Languages at Hugging Face" con el objetivo de democratizar el NLP en español:

  • ¿Cómo? Creando y compartiendo recursos que posibiliten y aceleren el desarrollo del NLP en Español.
  • ¿Por qué? La investigación en NLP está centrada en el inglés y descuida las dificultades particulares del NLP en español. Creemos que un idioma tan extendido como el español debería tener una representación acorde en el ámbito del NLP y vamos a hacer esto realidad.

¡Únete a la comunidad en Discord y síguenos en YouTube, Twitter y LinkedIn!

Spain AI

Spain AI es una red nacional y asociación sin ánimo de lucro, con la finalidad de crear una comunidad colaborativa dentro del ámbito de la Inteligencia Artificial en España.

26 ciudades ya y creciendo. Únete a nosotros o crea tu propia comunidad en spain-ai.com y @Spain_AI. ¡Síguenos!

Owner
Somos NLP
Comunidad de profesionales, investigadores y estudiantes acelerando el avance del NLP en Español.
Somos NLP
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
NeMo: a toolkit for conversational AI

NVIDIA NeMo Introduction NeMo is a toolkit for creating Conversational AI applications. NeMo product page. Introductory video. The toolkit comes with

NVIDIA Corporation 5.3k Jan 04, 2023
NeoDays-based tileset for the roguelike CDDA (Cataclysm Dark Days Ahead)

NeoDaysPlus Reduced contrast, expanded, and continuously developed version of the CDDA tileset NeoDays that's being completed with new sprites for mis

0 Nov 12, 2022
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

9 Dec 28, 2021
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

44 Jan 06, 2023
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022
Code for the paper PermuteFormer

PermuteFormer This repo includes codes for the paper PermuteFormer: Efficient Relative Position Encoding for Long Sequences. Directory long_range_aren

Peng Chen 42 Mar 16, 2022
Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Sonnet finder Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet. Usage This is a Python scrip

Marcel Bollmann 11 Sep 25, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
Code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

This repository contains the code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

Chenhe Dong 28 Nov 10, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 03, 2023
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
Main repository for the chatbot Bobotinho.

Bobotinho Bot Main repository for the chatbot Bobotinho. ℹ️ Introduction Twitch chatbot with entertainment commands. ‎ 💻 Technologies Concurrent code

Bobotinho 14 Nov 29, 2022
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022
Edge-Augmented Graph Transformer

Edge-augmented Graph Transformer Introduction This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https:

Md Shamim Hussain 21 Dec 14, 2022
Ukrainian TTS (text-to-speech) using Coqui TTS

title emoji colorFrom colorTo sdk app_file pinned Ukrainian TTS 🐸 green green gradio app.py false Ukrainian TTS 📢 🤖 Ukrainian TTS (text-to-speech)

Yurii Paniv 85 Dec 26, 2022
texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

Jörg Thalheim 70 Dec 26, 2022