Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Overview

Introduction

This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ([email protected]), Tiezheng Wang ([email protected]) and thanks for advice from TongFeng.

SpeakerGAN paper

SpeakerGAN: Speaker identification with conditional generative adversarial network, by Liyang Chen , Yifeng Liu , Wendong Xiao , Yingxue Wang ,Haiyong Xie.

Usage

For train / test / generate:

python speakergan.py

You may need to change the path of wav vad preprocessed files.

Our results

acc: 94.27% with random sampled testset. 

acc: 93.21% with fixed start sampled testset.

using model file: model/49_D.pkl

acc: 98.44% on training classification accuracy with real samples.

There is about 4% gap on testset lower compared to paper result. We can't find out the reason. We want your help !

Alt accuracy
Alt loss_d_loss_g
Alt learning_rate

Details of paper

The following are details about this paper.

================ input ==================

  1. feature: fbank, 8000hz, 25ms frame, 10ms overlap. shape:(160,64)

  2. dataset: librispeech-100 train-clean-100 POI:251

  3. data preprocess: vad、mean and variance normalization, shuffled.

  4. 60% train. 40% test.

================ model architecture ==================

  1. dataflow: data -> feature extraction -> G & D

  2. model architecture:

    G: gated CNN, encoder-decoder, Huber loss + adversarial loss

    D: ResnetBlocks, template average pooling, FC, softmax, crossentropy loss + adversarial loss

  3. G: shuffler layer, GLU

  4. D: ReLU

================ training ==================

  1. lr: 0-9, 0.0005 | 9-49, 0.0002

  2. L(d): λ1 λ2 = 1

  3. batch_size: 64

  4. D_train steps / G_train steps = 4

  5. Ladv Loss: Label smoothing, 1 -> 0.7 ~ 1.0, 0 -> 0 ~ 0.3

======== not sure or differences with paper ========

  1. weights,bias initialize function, use: xavier_uniform and zeros

  2. pytorch huber_loss: + 0.5 to be same with paper. but no implement here.

  3. for shorter wav, paper: padded with zero. we: padded with feature again.

  4. gated cnn architecture.

  5. we use webrtcvad mode(3) for vad preprocess.

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
Sequential GCN for Active Learning

Sequential GCN for Active Learning Please cite if using the code: Link to paper. Requirements: python 3.6+ torch 1.0+ pip libraries: tqdm, sklearn, sc

45 Dec 26, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023