Image Super-Resolution by Neural Texture Transfer

Related tags

Deep LearningSRNTT
Overview

SRNTT: Image Super-Resolution by Neural Texture Transfer

Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer accepted in CVPR 2019. This is a simplified version, where the reference images are used without augmentation, e.g., rotation and scaling.

Project Page

Pytorch Implementation

Contents

Pre-requisites

  • Python 3.6
  • TensorFlow 1.13.1
  • requests 2.21.0
  • pillow 5.4.1
  • matplotlib 3.0.2

Tested on MacOS (Mojave).

Dataset

This repo only provides a small training set of ten input-reference pairs for demo purpose. The input images and reference images are stored in data/train/CUFED/input and data/train/CUFED/ref, respectively. Corresponding input and refernece images are with the same file name. To speed up the training process, patch matching and swapping are performed offline, and the swapped feature maps will be saved to data/train/CUFED/map_321 (see offline_patchMatch_textureSwap.py for more details). If you want to train your own model, please prepare your own training set or download either of the following demo training sets:

11,485 input-reference pairs (size 320x320) extracted from DIV2K.

Each pair is extracted from the same image without overlap but considering scaling and rotation.

$ python download_dataset.py --dataset_name DIV2K
11,871 input-reference pairs (size 160x160) extracted from CUFED.

Each pair is extracted from the similar images, including five degrees of similarity.

$ python download_dataset.py --dataset_name CUFED

This repo includes one grounp of samples from the CUFED5 dataset, where each input image corresponds to five reference images (different from the paper) with different degrees of similarity to the input image. Please download the full dataset by

$ python download_dataset.py --dataset_name CUFED5

Easy Testing

$ sh test.sh

The results will be save to the folder demo_testing_srntt, including the following 6 images:

  • [1/6] HR.png, the original image.

    Original image

  • [2/6] LR.png, the low-resolution (LR) image, downscaling factor 4x.

    LR image

  • [3/6] Bicubic.png, the upscaled image by bicubic interpolation, upscaling factor 4x.

    Bicubic image

  • [4/6] Ref_XX.png, the reference images, indexed by XX.

    Reference image

  • [5/6] Upscale.png, the upscaled image by a pre-trained SR network, upscaling factor 4x.

    Upscaled image

  • [6/6] SRNTT.png, the SR result by SRNTT, upscaling factor 4x.

    Upscaled image

Custom Testing

$ python main.py 
    --is_train              False 
    --input_dir             path/to/input/image/file
    --ref_dir               path/to/ref/image/file
    --result_dir            path/to/result/folder
    --ref_scale             default 1, expected_ref_scale divided by original_ref_scale
    --is_original_image     default True, whether input is original 
    --use_init_model_only   default False, whether use init model, trained with reconstruction loss only
    --use_weight_map        defualt False, whether use weighted model, trained with the weight map.
    --save_dir              path/to/a/specified/model if it exists, otherwise ignor this parameter

Please note that this repo provides two types of pre-trained SRNTT models in SRNTT/models/SRNTT:

  • srntt.npz is trained by all losses, i.e., reconstruction loss, perceptual loss, texture loss, and adversarial loss.
  • srntt_init.npz is trained by only the reconstruction loss, corresponding to SRNTT-l2 in the paper.

To switch between the demo models, please set --use_init_model_only to decide whether use srntt_init.npz.

Easy Training

$ sh train.sh

The CUFED training set will be downloaded automatically. To speed up the training process, patch matching and swapping are conducted to get the swapped feature maps in an offline manner. The models will be saved to demo_training_srntt/model, and intermediate samples will be saved to demo_training_srntt/sample. Parameter settings are save to demo_training_srntt/arguments.txt.

Custom Training

Please first prepare the input and reference images which are squared patches in the same size. In addition, input and reference images should be stored in separated folders, and the correspoinding input and reference images are with the same file name. Please refer to the data/train/CUFED folder for examples. Then, use offline_patchMatch_textureSwap.py to generate the feature maps in ahead.

$ python main.py
    --is_train True
    --save_dir folder/to/save/models
    --input_dir path/to/input/image/folder
    --ref_dir path/to/ref/image/folder
    --map_dir path/to/feature_map/folder
    --batch_size default 9
    --num_epochs default 100
    --input_size default 40, the size of LR patch, i.e., 1/4 of the HR image, set to 80 for the DIV2K dataset
    --use_weight_map defualt False, whether use the weight map that reduces negative effect 
                     from the reference image but may also decrease the sharpness.  

Please refer to main.py for more parameter settings for training.

Test on the custom training model

$ python main.py 
    --is_train              False 
    --input_dir             path/to/input/image/file
    --ref_dir               path/to/ref/image/file
    --result_dir            path/to/result/folder
    --ref_scale             default 1, expected_ref_scale divided by original_ref_scale
    --is_original_image     default True, whether input is original 
    --save_dir              the same as save_dir in training

Acknowledgement

Thanks to Tensorlayer for facilitating the implementation of this demo code. We have include the Tensorlayer 1.5.0 in SRNTT/tensorlayer.

Contact

Zhifei Zhang

Owner
Zhifei Zhang
Zhifei Zhang
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
adversarial_multi_armed_bandit_variable_plays

Adversarial Multi-Armed Bandit with Variable Plays This code is for paper: Adversarial Online Learning with Variable Plays in the Evasion-and-Pursuit

Yiyang Wang 1 Oct 28, 2021
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
Convolutional Neural Network for Text Classification in Tensorflow

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convo

Denny Britz 5.5k Jan 02, 2023
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
Nicholas Lee 3 Jan 09, 2022