Image Super-Resolution by Neural Texture Transfer

Related tags

Deep LearningSRNTT
Overview

SRNTT: Image Super-Resolution by Neural Texture Transfer

Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer accepted in CVPR 2019. This is a simplified version, where the reference images are used without augmentation, e.g., rotation and scaling.

Project Page

Pytorch Implementation

Contents

Pre-requisites

  • Python 3.6
  • TensorFlow 1.13.1
  • requests 2.21.0
  • pillow 5.4.1
  • matplotlib 3.0.2

Tested on MacOS (Mojave).

Dataset

This repo only provides a small training set of ten input-reference pairs for demo purpose. The input images and reference images are stored in data/train/CUFED/input and data/train/CUFED/ref, respectively. Corresponding input and refernece images are with the same file name. To speed up the training process, patch matching and swapping are performed offline, and the swapped feature maps will be saved to data/train/CUFED/map_321 (see offline_patchMatch_textureSwap.py for more details). If you want to train your own model, please prepare your own training set or download either of the following demo training sets:

11,485 input-reference pairs (size 320x320) extracted from DIV2K.

Each pair is extracted from the same image without overlap but considering scaling and rotation.

$ python download_dataset.py --dataset_name DIV2K
11,871 input-reference pairs (size 160x160) extracted from CUFED.

Each pair is extracted from the similar images, including five degrees of similarity.

$ python download_dataset.py --dataset_name CUFED

This repo includes one grounp of samples from the CUFED5 dataset, where each input image corresponds to five reference images (different from the paper) with different degrees of similarity to the input image. Please download the full dataset by

$ python download_dataset.py --dataset_name CUFED5

Easy Testing

$ sh test.sh

The results will be save to the folder demo_testing_srntt, including the following 6 images:

  • [1/6] HR.png, the original image.

    Original image

  • [2/6] LR.png, the low-resolution (LR) image, downscaling factor 4x.

    LR image

  • [3/6] Bicubic.png, the upscaled image by bicubic interpolation, upscaling factor 4x.

    Bicubic image

  • [4/6] Ref_XX.png, the reference images, indexed by XX.

    Reference image

  • [5/6] Upscale.png, the upscaled image by a pre-trained SR network, upscaling factor 4x.

    Upscaled image

  • [6/6] SRNTT.png, the SR result by SRNTT, upscaling factor 4x.

    Upscaled image

Custom Testing

$ python main.py 
    --is_train              False 
    --input_dir             path/to/input/image/file
    --ref_dir               path/to/ref/image/file
    --result_dir            path/to/result/folder
    --ref_scale             default 1, expected_ref_scale divided by original_ref_scale
    --is_original_image     default True, whether input is original 
    --use_init_model_only   default False, whether use init model, trained with reconstruction loss only
    --use_weight_map        defualt False, whether use weighted model, trained with the weight map.
    --save_dir              path/to/a/specified/model if it exists, otherwise ignor this parameter

Please note that this repo provides two types of pre-trained SRNTT models in SRNTT/models/SRNTT:

  • srntt.npz is trained by all losses, i.e., reconstruction loss, perceptual loss, texture loss, and adversarial loss.
  • srntt_init.npz is trained by only the reconstruction loss, corresponding to SRNTT-l2 in the paper.

To switch between the demo models, please set --use_init_model_only to decide whether use srntt_init.npz.

Easy Training

$ sh train.sh

The CUFED training set will be downloaded automatically. To speed up the training process, patch matching and swapping are conducted to get the swapped feature maps in an offline manner. The models will be saved to demo_training_srntt/model, and intermediate samples will be saved to demo_training_srntt/sample. Parameter settings are save to demo_training_srntt/arguments.txt.

Custom Training

Please first prepare the input and reference images which are squared patches in the same size. In addition, input and reference images should be stored in separated folders, and the correspoinding input and reference images are with the same file name. Please refer to the data/train/CUFED folder for examples. Then, use offline_patchMatch_textureSwap.py to generate the feature maps in ahead.

$ python main.py
    --is_train True
    --save_dir folder/to/save/models
    --input_dir path/to/input/image/folder
    --ref_dir path/to/ref/image/folder
    --map_dir path/to/feature_map/folder
    --batch_size default 9
    --num_epochs default 100
    --input_size default 40, the size of LR patch, i.e., 1/4 of the HR image, set to 80 for the DIV2K dataset
    --use_weight_map defualt False, whether use the weight map that reduces negative effect 
                     from the reference image but may also decrease the sharpness.  

Please refer to main.py for more parameter settings for training.

Test on the custom training model

$ python main.py 
    --is_train              False 
    --input_dir             path/to/input/image/file
    --ref_dir               path/to/ref/image/file
    --result_dir            path/to/result/folder
    --ref_scale             default 1, expected_ref_scale divided by original_ref_scale
    --is_original_image     default True, whether input is original 
    --save_dir              the same as save_dir in training

Acknowledgement

Thanks to Tensorlayer for facilitating the implementation of this demo code. We have include the Tensorlayer 1.5.0 in SRNTT/tensorlayer.

Contact

Zhifei Zhang

Owner
Zhifei Zhang
Zhifei Zhang
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
adversarial_multi_armed_bandit_variable_plays

Adversarial Multi-Armed Bandit with Variable Plays This code is for paper: Adversarial Online Learning with Variable Plays in the Evasion-and-Pursuit

Yiyang Wang 1 Oct 28, 2021
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022