Interpretable Models for NLP using PyTorch

Overview

This repo is deprecated. Please find the updated package here.

https://github.com/EdGENetworks/anuvada

Anuvada: Interpretable Models for NLP using PyTorch

One of the common criticisms of deep learning has been it's black box nature. To address this issue, researchers have developed many ways to visualise and explain the inference. Some examples would be attention in the case of RNN's, activation maps, guided back propagation and occlusion (in the case of CNN's). This library is an ongoing effort to provide a high-level access to such models relying on PyTorch.

Installing

Clone this repo and add it to your python library path.

Getting started

Importing libraries

import anuvada
import numpy as np
import torch
import pandas as pd
from anuvada.models.classification_attention_rnn import AttentionClassifier

Creating the dataset

from anuvada.datasets.data_loader import CreateDataset
from anuvada.datasets.data_loader import LoadData
data = CreateDataset()
df = pd.read_csv('MovieSummaries/movie_summary_filtered.csv')
# passing only the first 512 samples, I don't have a GPU!
y = list(df.Genre.values)[0:512]
x = list(df.summary.values)[0:512]
x, y = data.create_dataset(x,y, folder_path='test', max_doc_tokens=500)

Loading created dataset

l = LoadData()
x, y, token2id, label2id, lengths_mask = l.load_data_from_path('test')

Change into torch vectors

x = torch.from_numpy(x)
y = torch.from_numpy(y)

Create attention classifier

acf = AttentionClassifier(vocab_size=len(token2id),embed_size=25,gru_hidden=25,n_classes=len(label2id))
loss = acf.fit(x,y, lengths_mask ,epochs=5)
Epoch 1 / 5
[========================================] 100%	loss: 3.9904loss: 3.9904

Epoch 2 / 5
[========================================] 100%	loss: 3.9851loss: 3.9851

Epoch 3 / 5
[========================================] 100%	loss: 3.9783loss: 3.9783

Epoch 4 / 5
[========================================] 100%	loss: 3.9739loss: 3.9739

Epoch 5 / 5
[========================================] 100%	loss: 3.9650loss: 3.9650

To do list

  • Implement Attention with RNN
  • Implement Attention Visualisation
  • Implement working Fit Module
  • Implement support for masking gradients in RNN (Working now!)
  • Implement a generic data set loader
  • Implement CNN Classifier with feature map visualisation

Acknowledgments

Owner
Sandeep Tammu
Data Scientist.
Sandeep Tammu
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
CoSENT 比Sentence-BERT更有效的句向量方案

CoSENT 比Sentence-BERT更有效的句向量方案

苏剑林(Jianlin Su) 201 Dec 12, 2022
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022
NLP: SLU tagging

NLP: SLU tagging

北海若 3 Jan 14, 2022
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
Pattern Matching in Python

Pattern Matching finalmente chega no Python 3.10. E daí? "Pattern matching", ou "correspondência de padrões" como é conhecido no Brasil. Algumas pesso

Fabricio Werneck 6 Feb 16, 2022
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
NLTK Source

Natural Language Toolkit (NLTK) NLTK -- the Natural Language Toolkit -- is a suite of open source Python modules, data sets, and tutorials supporting

Natural Language Toolkit 11.4k Jan 04, 2023
Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks

wav2vec_finetune Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks Initial test: gender recognition on this dat

8 Aug 11, 2022
Persian Bert For Long-Range Sequences

ParsBigBird: Persian Bert For Long-Range Sequences The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many ta

Sajjad Ayoubi 63 Dec 14, 2022
auto_code_complete is a auto word-completetion program which allows you to customize it on your need

auto_code_complete v1.3 purpose and usage auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the m

RUO 2 Feb 22, 2022
Predict an emoji that is associated with a text

Sentiment Analysis Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you

Tetsumichi(Telly) Umada 30 Sep 07, 2022
Random-Word-Generator - Generates meaningful words from dictionary with given no. of letters and words.

Random Word Generator Generates meaningful words from dictionary with given no. of letters and words. This might be useful for generating short links

Mohammed Rabil 1 Jan 01, 2022
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022