Official code for UnICORNN (ICML 2021)

Overview

UnICORNN
(Undamped Independent Controlled Oscillatory RNN)
[ICML 2021]

This repository contains the implementation to reproduce the numerical experiments of the ICML 2021 paper UnICORNN: A recurrent model for learning very long time dependencies

Requirements

This code runs on GPUs only, as the recurrent part of UnICORNN is implemented directly in CUDA. The CUDA extension is compiled using pynvrtc. Make sure all of the packages below are installed.

python 3.7.4
cupy 7.6.0
pynvrtc 9.2
pytorch 1.5.1+cu101 
torchvision 0.6.1+cu101
torchtext 0.6.0
numpy 1.17.3
spacy 2.3.2

Speed

The recurrent part of UnICORNN is directly implemented in pure CUDA (as a PyTorch extension to the remaining standard PyTorch code), where each dimension of the underlying dynamical system is computed on an independent CUDA thread. This leads to an amazing speed-up over using PyTorch on GPUs directly (depending on the data set around 30-50 times faster). Below is a speed comparison of our UnICORNN implementation to the fastest RNN implementations you can find (the set-up of this benchmark can be found in the main paper):

Datasets

This repository contains the codes to reproduce the results of the following experiments for the proposed UnICORNN:

  • Permuted Sequential MNIST
  • Noise-padded CIFAR10
  • EigenWorms
  • Healthcare AI: Respiratory rate (RR)
  • Healthcare AI: Heart rate (HR)
  • IMDB

Results

The results of the UnICORNN for each of the experiments are:

Experiment Result
psMNIST 98.4% test accuracy
Noise-padded CIFAR10 62.4% test accuarcy
Eigenworms 94.9% test accuracy
Healthcare AI: RR 1.00 L2 loss
Healthcare AI: HR 1.31 L2 loss
IMDB 88.4% test accuracy

Citation

@inproceedings{pmlr-v139-rusch21a,
  title = 	 {UnICORNN: A recurrent model for learning very long time dependencies},
  author =       {Rusch, T. Konstantin and Mishra, Siddhartha},
  booktitle = 	 {Proceedings of the 38th International Conference on Machine Learning},
  pages = 	 {9168--9178},
  year = 	 {2021},
  volume = 	 {139},
  series = 	 {Proceedings of Machine Learning Research},
  publisher =    {PMLR},
}
Owner
Konstantin Rusch
PhD student in applied mathematics at ETH Zurich.
Konstantin Rusch
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022