BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

Overview

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

Installing The Dependencies

$ conda create --name beametrics python>=3.8
$ conda activate beametrics

WARNING: You need to install, before any package, correct version of pytorch linked to your cuda version.

(beametrics) $ conda install pytorch cudatoolkit=10.1 -c pytorch

Install BEAMetrics:

(beametrics) $ cd BEAMetrics
(beametrics) $ pip install -e .

Install Nubia metric (not on PyPI, 16/08/2021):

(beametrics) git clone https://github.com/wl-research/nubia.git
(beametrics) pip install -r requirements.txt

Alternatively, you can remove nubia from _DEFAULT_METRIC_NAMES in metrics.metric_reporter.

Reproducing the results

First you need to get the processed files, which include the metric scores. You can do that either by simply downloading the processed data (see Section Download Data), or by re-computing the scores (see Section Compute Correlations).

Then, the first bloc in the notebook visualize.ipynb allows to get all the tables from the paper (and also to generate the latex code in data/correlation).

Download the data

All the dataset can be downloaded from this zip file. It needs to be unzipped into the path data before running the correlations.

unzip data.zip

The data folder contains:

  • a subfolder raw containing all the original dataset
  • a subfolder processed containing all the dataset processed in a unified format
  • a subfolder correlation containing all the final correlation results, and the main tables of the paper
  • a subfolder datacards containing all the data cards

Computing the correlations

Processing the files to a clean json with the metrics computed:

python beametrics/run_all.py

The optional argument --dataset allows to compute only on a specific dataset, e.g.:

python run_all.py --dataset SummarizationCNNDM.

The list of the datasets and their corresponding configuration can be found in configs/__init__.

When finished, you can print the final table as in the paper, see the notebook visualize.ipynb.

Data Cards:

For each dataset, a data card is available in the datacard folder. The cards are automatically generated when running run_all.py, by filling the template with the dataset configuration as detailed bellow, in Adding a new dataset.

Adding a new dataset:

In configs/, you need to create a new .py file that inherites from ConfigBase (in configs/co'nfig_base.py). You are expected to fill the mandatory fields that allow to run the code and fill the data card template:

  • file_name: the file name located in data/raw
  • file_name_processed: the file name once processed and formated
  • metric_names: you can pass _DEFAULT_METRIC_NAMES by default or customize it, e.g. metric_names = metric_names + ('sari',) where sari corresponds to a valid metric (see the next section)
  • name_dataset: the name of the dataset as it was published
  • short_name_dataset: few letters that will be used to name the dataset in the final table report
  • languages: the languages of the dataset (e.g. [en] or [en, fr])
  • task: e.g. 'simplification', 'data2text
  • number_examples: the total number of evaluated texts
  • nb_refs: the number of references available in the dataset
  • dimensions_definitions: the evaluated dimensions and their corresponding definition e.g. {'fluency: 'How fluent is the text?'}
  • scale: the scale used during the evaluation, as defined in the protocol
  • source_eval_sets: the dataset from which the source were collected to generate the evaluated examples
  • annotators: some information about who were the annotators
  • sampled_from: the URL where was released the evaluation dataset
  • citation: the citation of the paper where the dataset was released

Your class needs its custom method format_file. The function takes as input the dataset's file_name and return a dictionary d_data. The format for d_data has to be the same for all the datasets:

d_data = {
    key_1: {
        'source': "a_source", 
        'hypothesis': "an_hypothesis",
        'references': ["ref_1", "ref_2", ...],
        'dim_1': float(a_score),
        'dim_2': float(an_other_score),
    },
    ...
    key_n: {
        ...
    }
}

where 'key_1' and 'key_n' are the keys for the first and nth example, dim_1 and dim_2 dimensions corresponding to self.dimensions.

Finally, you need to add your dataset to the dictionary D_ALL_DATASETS located in config/__init__.

Adding a new metric:

First, create a class inheriting from metrics/metrics/MetricBase. Then, simply add it to the dictionary _D_METRICS in metrics/__init__.

For the metric to be computed by default, its name has to be added to either

  • _DEFAULT_METRIC_NAMES: metrics computed on each dataset
  • _DEFAULT_METRIC_NAMES_SRC: metrics computed on dataset that have a text format for their source (are excluded for now image captioning and data2text). These two tuples are located in metrics/metric_reported.

Alternatively, you can add the metric to a specific configuration by adding it to the attribute metric_names in the config.

Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022