Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Overview

Google Text-To-Speech Batch Prompt File Maker

forthebadge forthebadge

Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pro! This repository contains a tool for generating Google Text-To-Speech audio files in batch. It is ideal for offline prompts creation with Google voices for application in IVRs

In order to use this repository, clone the contents in your local environment with the following console command:

git clone https://github.com/ponchotitlan/google_text-to-speech_prompt_maker.git

Once cloned, follow the next steps for environment setup:

1) GCP account setup

Before adjusting up the contents of this project, it is neccesary to setup the Cloud Text-to-Speech API in your Google Cloud project:

  1. Follow the official documentation for activating this API and creating a Service Account
  2. Generate a JSON key associated to this Service Account
  3. Save this JSON key file in the same location as the contents of this repository

2) CSV and YAML files

Prepare a CSV document with the texts that you want to convert into prompt audio files. The CSV must have the following structure:

    <FILE NAME WITHOUT THE EXTENSION> , <PROMPT TEXT OR COMPLIANT SSML GRAMMAR>

An Excel export to CSV format should be enough for rendering a compatible structure, ever since the text within a cell is dumped between quotes if it contains spaces. An example of a compliant file with SSML prompts would look like the following:

    sample_prompt_01,"<speak>Welcome to ACME. How can I help you today?</speak>"
    sample_prompt_02,"<speak>Press 1 for sales. <break time=200ms/>Press 2 for Tech Support. <break time=200ms/>Or stay in the line for agent support</speak>"
    ...

Additionally, prepare a YAML document with the structure mentioned in the setup.yaml file included in this repository. The fields are the following:

# CSV format is: FILE_NAME , PROMPT_CONTENT
csv_prompts_file: <my_csv_file.csv>

google_settings:
    # ROUTE TO THE JSON KEY ASSOCIATED TO GCP. IF THE ROUTE HAS SPACES, ADD QUOTES TO THE VALUE
    JSON_key: <my_key.json>

    # PROMPT TYPE. ALLOWED VALUES ARE:
    # normal | SSML
    prompt_type: SSML

    # FILE FORMAT. ALLOWED VALUES ARE:
    # wav | mp3
    output_audio_format: wav

    # COMPLIANT LANGUAGE CODE. SEE https://cloud.google.com/text-to-speech/docs/voices FOR COMPATIBLE CODES
    language_code: es-US

    # COMPLIANT VOICE NAME. SEE https://cloud.google.com/text-to-speech/docs/voices FOR COMPATIBLE NAMES
    voice_name: es-US-Wavenet-C

    # COMPLIANT VOICE GENDER. SEE https://cloud.google.com/text-to-speech/docs/voices FOR COMPATIBLE GENDERS WITH THE SELECTED VOICE ABOVE
    voice_gender: MALE

    # COMPLIANT AUDIO ENCODING. SUPPORTED TYPES ARE:
    # AUDIO_ENCODING_UNSPECIFIED | LINEAR16 | MP3 | OGG_OPUS
    audio_encoding: LINEAR16

3) Dependencies installation

Install the requirements in a virtual environment with the following command:

pip install -r requirements.txt

4) Inline calling

The usage of the script requires the following inline elements:

usage: init.py [-h] [-b BATCH] configurationYAML

Batch prompt generation with Google TTS services

positional arguments:
  configurationYAML     YAML file with operation settings

optional arguments:
  -h, --help            show this help message and exit
  -b BATCH, --batch BATCH
                        Amount of rows in the CSV file to process at the same
                        time. Suggested max value is 100. Default is 10

An example is:

py init.py setup.yaml

The command prompt will show logs based on the status of each row:

✅ Prompt sample_prompt_04.WAV created successfully!
✅ Prompt sample_prompt_01.WAV created successfully!
✅ Prompt sample_prompt_03.WAV created successfully!
✅ Prompt sample_prompt_02.WAV created successfully!

The corresponding audio files will be saved in the same location where this script is executed.

5) Encoding for Cisco CVP Audio Elements

Unfortunately, Google Text-To-Speech service does not support the compulsory 8-bit μ-law encoding as per the Python SDK documentation (I am currently working on a Java version which does support this encoding. This option might be released in the Python SDK in the future). However, there are many online services such as this one for achieving the aforementioned. Audacity can also be used for the purpose. Follow this tutorial for compatible file conversion steps. There's a more straightforward tool which has been proven useful for me in order to process batch files with the CVP compatible settings.

The resulting files can later be uploaded into the Tomcat server for usage within a design in Cisco CallStudio. The route within the CVP Windows Server VM is the following:

    C:\Cisco\CVP\VXMLServer\Tomcat\webapps\CVP\audio

Please refer to the Official Cisco Documentation for more information.

Crafted with ❤️ by Alfonso Sandoval - Cisco

You might also like...
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

voice2json is a collection of command-line tools for offline speech/intent recognition on Linux
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

A Python module made to simplify the usage of Text To Speech and Speech Recognition.
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

Command Line Text-To-Speech using Google TTS
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

Releases(v1.2.0)
Owner
Ponchotitlán
💻 ☕ 🥃 Let's talk about networks coding, automation and orchestration autour a cup of coffee, and a sip of tequila;
Ponchotitlán
A Paper List for Speech Translation

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

138 Dec 24, 2022
Spokestack is a library that allows a user to easily incorporate a voice interface into any Python application with a focus on embedded systems.

Welcome to Spokestack Python! This library is intended for developing voice interfaces in Python. This can include anything from Raspberry Pi applicat

Spokestack 133 Sep 20, 2022
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
Prithivida 690 Jan 04, 2023
jiant is an NLP toolkit

jiant is an NLP toolkit The multitask and transfer learning toolkit for natural language processing research Why should I use jiant? jiant supports mu

ML² AT CILVR 1.5k Jan 04, 2023
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022
A notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository

We provide a notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository. The notebook also shows how to segment the corpus using BPE tokenizatio

Computation for Indian Language Technology (CFILT) 9 Oct 13, 2022
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch

nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch. Most of the models in NLP were implemented with less than 100 lines of code.(except comments or blank li

Tae-Hwan Jung 11.9k Jan 08, 2023
ChatterBot is a machine learning, conversational dialog engine for creating chat bots

ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on

Gunther Cox 12.8k Jan 03, 2023
Blender addon - Scrub timeline from viewport with a shortcut

Viewport scrub timeline Move in the timeline directly in viewport and snap to nearest keyframe Note : This standalone feature will be added in the nat

Samuel Bernou 40 Nov 07, 2022
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Yuqing Xie 2 Feb 17, 2022
A simple version of DeTR

DeTR-Lite A simple version of DeTR Before you enjoy this DeTR-Lite The purpose of this project is to allow you to learn the basic knowledge of DeTR. P

Jianhua Yang 11 Jun 13, 2022