超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新

Overview

bert4pytorch

2021年8月27更新:

感谢大家的star,最近有小伙伴反映了一些小的bug,我也注意到了,奈何这个月工作上实在太忙,更新不及时,大约会在9月中旬集中更新一个只需要pip一下就完全可用的版本,然后会新添加一些关键注释。 再增加对抗训练的内容,更新一个完整的finetune案例。

背景

目前最流行的pytorch版本的bert框架,莫过于huggingface团队的Transformers项目,但是随着项目的越来越大,显得很重,对于初学者、有一定nlp基础的人来说,想看懂里面的代码逻辑,深入了解bert,有很大的难度。

另外,如果想修改Transformers的底层代码也是想当困难的,导致很难对模型进行魔改。

本项目把整个bert架构,浓缩在几个文件当中(主要修改自Transfomers开源项目),删除大量无关紧要的代码,新增了一些功能,比如:ema、warmup schedule,并且在核心部分,添加了大量中文注释,力求解答读者在使用过程中产生的一些疑惑。

此项目核心只有三个文件,modeling、tokenization、optimization。并且都在几百行内完成。结合大量的中文注释,分分钟透彻理解bert。

功能

现在已经实现

  • 加载bert、RoBERTa-wwm-ext的预训练权重进行fintune
  • 实现了带warmup的优化器
  • 实现了模型权重的指数滑动平均(ema)

未来将实现

  • albert、GPT、XLnet等网络架构
  • 实现对抗训练、conditional Layer Norm等功能(想法来自于苏神(苏剑林)的bert4keras开源项目,事实上,bert4pytorch就是受到了它的启发)
  • 添加大量的例子和中文注释,减轻学习难度

安装

pip install bert4pytorch==0.1.2

使用

  • 加载预训练模型
from bert4pytorch.modeling import BertModel, BertConfig
from bert4pytorch.tokenization import BertTokenizer
from bert4pytorch.optimization import AdamW, get_linear_schedule_with_warmup
import torch

model_path = "/model/pytorch_bert_pretrain_model"
config = BertConfig(model_path + "/config.json")

tokenizer = BertTokenizer(model_path + "/vocab.txt")
model = BertModel.from_pretrained(model_path, config)

input_ids, token_type_ids = tokenizer.encode("今天很开心")

input_ids = torch.tensor([input_ids])
token_type_ids = torch.tensor([token_type_ids])

model.eval()

outputs = model(input_ids, token_type_ids, output_all_encoded_layers=True)

## orther code
  • 带warmup的优化器实现
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
    {'params': [p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
    {'params': [p for n, p in param_optimizer
                if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=1e-5, correct_bias=False)

num_training_steps=train_batches * num_epoches
num_warmup_steps=num_training_steps * warmup_proportion
schedule = get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps)

其他

最初整理这个项目,只是为了自己方便。这一段时间,经常逛苏剑林大佬的博客,里面的内容写得相当精辟,更加感叹的是, 苏神经常能闭门造车出一些还不错的trick,只能说,大佬牛逼。

所以本项目命名也雷同bert4keras,以感谢苏大佬无私的分享。

后来,慢慢萌生把学习中的小小成果开源出来,后期会渐渐补充例子,前期会借用苏神的bert4keras里面的例子,实现pytorch版本。如果有问题,欢迎讨论;如果本项目对您有用,请不吝star!

Owner
muqiu
muqiu
In this Notebook I've build some machine-learning and deep-learning to classify corona virus tweets, in both multi class classification and binary classification.

Hello, This Notebook Contains Example of Corona Virus Tweets Multi Class Classification. - Classes is: Extremely Positive, Positive, Extremely Negativ

Khaled Tofailieh 3 Dec 06, 2022
BERT score for text generation

BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in

Tianyi 1k Jan 08, 2023
Honor's thesis project analyzing whether the GPT-2 model can more effectively generate free-verse or structured poetry.

gpt2-poetry The following code is for my senior honor's thesis project, under the guidance of Dr. Keith Holyoak at the University of California, Los A

Ashley Kim 2 Jan 09, 2022
A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Jeong Ukjae 20 Jul 11, 2022
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022
1 Jun 28, 2022
Neural network sequence labeling model

Sequence labeler This is a neural network sequence labeling system. Given a sequence of tokens, it will learn to assign labels to each token. Can be u

Marek Rei 250 Nov 03, 2022
문장단위로 분절된 나무위키 데이터셋. Releases에서 다운로드 받거나, tfds-korean을 통해 다운로드 받으세요.

Namuwiki corpus 문장단위로 미리 분절된 나무위키 코퍼스. 목적이 LM등에서 사용하기 위한 데이터셋이라, 링크/이미지/테이블 등등이 잘려있습니다. 문장 단위 분절은 kss를 활용하였습니다. 라이선스는 나무위키에 명시된 바와 같이 CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
Materials (slides, code, assignments) for the NYU class I teach on NLP and ML Systems (Master of Engineering).

FREE_7773 Repo containing material for the NYU class (Master of Engineering) I teach on NLP, ML Sys etc. For context on what the class is trying to ac

Jacopo Tagliabue 90 Dec 19, 2022
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Zhenhailong Wang 2 Jul 15, 2022
Constituency Tree Labeling Tool

Constituency Tree Labeling Tool The purpose of this package is to solve the constituency tree labeling problem. Look from the dataset labeled by NLTK,

张宇 6 Dec 20, 2022
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Facebook Research 409 Oct 28, 2022
KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정한 코드입니다.

KoBERTopic 모델 소개 KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정했습니다. 기존 BERTopic : https://github.com/MaartenGr/BERTopic/tree/05a6790b21009d

Won Joon Yoo 26 Jan 03, 2023