The official colors of the FAU as matplotlib/seaborn colormaps

Overview

FAU - Colors

PyPI GitHub Code style: black PyPI - Downloads GitHub commit activity

The official colors of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) as matplotlib / seaborn colormaps.

We support the old colors based on the 2019 CI-guidelines and the brand new 2021 Brand redesign.

Installation

pip install fau-colors

Quick Guide

2021 colormaps

2021 colors

import seaborn as sns

from fau_colors import register_cmaps
register_cmaps()

sns.set_palette("tech")

2019 colormaps

2019 colors

import seaborn as sns

from fau_colors.v2019 import register_cmaps
register_cmaps()

sns.set_palette("tech")

General Usage

The 2019 and the 2021 colors are available in the separate submodules fau_colors.v2019 and fau_colors.v2021 that contain equivalent functions.

Note: For convenience, the v2021 colors can also be accessed from the top-level. In the following examples we will use this shorter notation.

The methods below show the usage with the new color scheme. For the old colors simply replace the module name.

Registering color palettes

The easiest way to use the provided color palettes is to register them as global matplotlib colormaps. This can be done by calling the register_cmaps() function from the respective submodule. All available cmaps can be seen in the images above.

2021 colors

>>> from fau_colors import register_cmaps  # v2021 colors
>>> register_cmaps()

2019 colors

>>> from fau_colors.v2019 import register_cmaps
>>> register_cmaps()

WARNING: The 2019 and 2021 cmaps have overlapping names! This means you can not register both at the same time. You need to call unregister_cmaps from the correct module first, before you can register the other colormaps. If you need colormaps from both CI-guides, use them individually, as shown below.

Getting the raw colors

All primary faculty colors are stored in a namedtuple called colors.

2021 colors

>>> from fau_colors import colors  # v2021 colors
>>> colors
FacultyColors(fau='#002F6C', tech='#779FB5', phil='#FFB81C', med='#00A3E0', nat='#43B02A', wiso='#C8102E')
>>> colors.fau
'#002F6C'

2019 colors

>>> from fau_colors.v2019 import colors
>>> colors
FacultyColors(fau='#003865', tech='#98a4ae', phil='#c99313', med='#00b1eb', nat='#009b77', wiso='#8d1429')
>>> colors.fau
'##003865'

For the 2021 color scheme also the variable colors_dark and colors_all are available. They contain the dark variant of each color, as well as light and dark colors combined, respectively.

Manually getting the colormaps

The colormaps are stored in a namedtuple called cmaps. There are colormaps for the primary colors and colormaps with varying lightness using each color as the base color. The latter colormaps contain 5 colors each with 12.5, 25, 37.5, 62.5, and 100% value of the base color. If you need more than 5 colors see below.

2021 colors

>>> from fau_colors import cmaps  # v2021 colors
>>> # Only get the names here
>>> cmaps._fields
('faculties', 'faculties_dark', 'faculties_all', 'fau', 'fau_dark', 'tech', 'tech_dark', 'phil', 'phil_dark', 'med', 'med_dark', 'nat', 'nat_dark', 'wiso', 'wiso_dark')
>>> cmaps.fau_dark
[(0.01568627450980392, 0.11764705882352941, 0.25882352941176473), (0.3823913879277201, 0.4463667820069205, 0.5349480968858131), (0.629434832756632, 0.6678200692041523, 0.7209688581314879), (0.7529565551710881, 0.7785467128027682, 0.8139792387543252), (0.876478277585544, 0.889273356401384, 0.9069896193771626)]
>>> import seaborn as sns
>>> sns.set_palette(cmaps.fau_dark)

2019 colors

>>> from fau_colors.v2019 import cmaps
>>> # Only get the names here
>>> cmaps._fields
('faculties', 'fau', 'tech', 'phil', 'med', 'nat', 'wiso')
>>> cmaps.fau
[(0.0, 0.2196078431372549, 0.396078431372549), (0.37254901960784315, 0.5103421760861206, 0.6210688196847366), (0.6235294117647059, 0.7062053056516724, 0.772641291810842), (0.7490196078431373, 0.8041368704344483, 0.8484275278738946), (0.8745098039215686, 0.9020684352172241, 0.9242137639369473)]
>>> import seaborn as sns
>>> sns.set_palette(cmaps.fau)

Modifying the colormaps

Sometimes five colors are not enough for a colormap. The easiest way to generate more colors is to use one of the FAU colors as base and then create custom sequential palettes from it. This can be done using sns.light_palette or sns.dark_palette, as explained here.

2021 colors

>>> from fau_colors import colors  # v2021 colors
>>> import seaborn as sns
>>> sns.light_palette(colors.med, n_colors=8)
[(0.9370639121761148, 0.9445189791516921, 0.9520035391049294), (0.8047725363394869, 0.9014173378043252, 0.9416168802970363), (0.6688064000629526, 0.8571184286417537, 0.9309417031889239), (0.5365150242263246, 0.8140167872943868, 0.9205550443810308), (0.40054888794979027, 0.7697178781318151, 0.9098798672729183), (0.2682575121131623, 0.7266162367844482, 0.8994932084650251), (0.13229137583662798, 0.6823173276218767, 0.8888180313569127), (0.0, 0.6392156862745098, 0.8784313725490196)]

2019 colors

>>> from fau_colors.v2019 import colors
>>> import seaborn as sns
>>> sns.light_palette(colors.med, n_colors=8)
[(0.9363137612705862, 0.94473936725293, 0.9520047198366567), (0.8041282890912094, 0.9093574773431737, 0.9477078597351495), (0.6682709982401831, 0.8729927571581465, 0.9432916424086003), (0.5360855260608062, 0.8376108672483904, 0.9389947823070931), (0.40022823520978, 0.8012461470633632, 0.9345785649805439), (0.2680427630304031, 0.765864257153607, 0.9302817048790367), (0.13218547217937693, 0.7294995369685797, 0.9258654875524875), (0.0, 0.6941176470588235, 0.9215686274509803)]c
You might also like...
:small_red_triangle: Ternary plotting library for python with matplotlib
:small_red_triangle: Ternary plotting library for python with matplotlib

python-ternary This is a plotting library for use with matplotlib to make ternary plots plots in the two dimensional simplex projected onto a two dime

Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

A python package for animating plots build on matplotlib.
A python package for animating plots build on matplotlib.

animatplot A python package for making interactive as well as animated plots with matplotlib. Requires Python = 3.5 Matplotlib = 2.2 (because slider

matplotlib: plotting with Python
matplotlib: plotting with Python

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Check out our home page for more inform

Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

:small_red_triangle: Ternary plotting library for python with matplotlib
:small_red_triangle: Ternary plotting library for python with matplotlib

python-ternary This is a plotting library for use with matplotlib to make ternary plots plots in the two dimensional simplex projected onto a two dime

Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

A python package for animating plots build on matplotlib.
A python package for animating plots build on matplotlib.

animatplot A python package for making interactive as well as animated plots with matplotlib. Requires Python = 3.5 Matplotlib = 2.2 (because slider

Painlessly create beautiful matplotlib plots.
Painlessly create beautiful matplotlib plots.

Announcement Thank you to everyone who has used prettyplotlib and made it what it is today! Unfortunately, I no longer have the bandwidth to maintain

Comments
Releases(v1.4.3)
Owner
Machine Learning and Data Analytics Lab FAU
Public projects of the Machine Learning and Data Analytics Lab at the Friedrich-Alexander-University Erlangen-Nürnberg
Machine Learning and Data Analytics Lab FAU
Matplotlib colormaps from the yt project !

cmyt Matplotlib colormaps from the yt project ! Colormaps overview The following colormaps, as well as their respective reversed (*_r) versions are av

The yt project 5 Sep 16, 2022
A small tool to test and visualize protein embeddings and amino acid proportions.

polyprotein_stats A small tool to test and visualize protein embeddings and amino acid proportions. Currently deployed on streamlit.io. Given a set of

2 Jan 07, 2023
Visualize large time-series data in plotly

plotly_resampler enables visualizing large sequential data by adding resampling functionality to Plotly figures. In this Plotly-Resampler demo over 11

PreDiCT.IDLab 604 Dec 28, 2022
RockNext is an Open Source extending ERPNext built on top of Frappe bringing enterprise ready utilization.

RockNext is an Open Source extending ERPNext built on top of Frappe bringing enterprise ready utilization.

Matheus Breguêz 13 Oct 12, 2022
Plotting library for IPython/Jupyter notebooks

bqplot 2-D plotting library for Project Jupyter Introduction bqplot is a 2-D visualization system for Jupyter, based on the constructs of the Grammar

3.4k Dec 29, 2022
Graphing communities on Twitch.tv in a visually intuitive way

VisualizingTwitchCommunities This project maps communities of streamers on Twitch.tv based on shared viewership. The data is collected from the Twitch

Kiran Gershenfeld 312 Jan 07, 2023
Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordcloud packages

Wikipedia WordCloud App Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordclou

Siva Prakash 5 Jan 02, 2022
clock_plot provides a simple way to visualize timeseries data, mapping 24 hours onto the 360 degrees of a polar plot

clock_plot clock_plot provides a simple way to visualize timeseries data mapping 24 hours onto the 360 degrees of a polar plot. For usage, please see

12 Aug 24, 2022
GitHub English Top Charts

Help you discover excellent English projects and get rid of the interference of other spoken language.

kon9chunkit 529 Jan 02, 2023
Param: Make your Python code clearer and more reliable by declaring Parameters

Param Param is a library providing Parameters: Python attributes extended to have features such as type and range checking, dynamically generated valu

HoloViz 304 Jan 07, 2023
BGraph is a tool designed to generate dependencies graphs from Android.bp soong files.

BGraph BGraph is a tool designed to generate dependencies graphs from Android.bp soong files. Overview BGraph (for Build-Graphs) is a project aimed at

Quarkslab 10 Dec 19, 2022
The official colors of the FAU as matplotlib/seaborn colormaps

FAU - Colors The official colors of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) as matplotlib / seaborn colormaps. We support the old colo

Machine Learning and Data Analytics Lab FAU 9 Sep 05, 2022
China and India Population and GDP Visualization

China and India Population and GDP Visualization Historical Population Comparison between India and China This graph shows the population data of Indi

Nicolas De Mello 10 Oct 27, 2021
matplotlib: plotting with Python

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Check out our home page for more inform

Matplotlib Developers 16.7k Jan 08, 2023
a simple REPL display lib for circuitpython

Circuitpython-termio-lib a simple REPL display lib for circuitpython Fonctions cls clear terminal screen and set cursor on top left : coords 0,0 usage

BeBoXoS 1 Nov 17, 2021
The open-source tool for building high-quality datasets and computer vision models

The open-source tool for building high-quality datasets and computer vision models. Website • Docs • Try it Now • Tutorials • Examples • Blog • Commun

Voxel51 2.4k Jan 07, 2023
Tools for writing, submitting, debugging, and monitoring Storm topologies in pure Python

Petrel Tools for writing, submitting, debugging, and monitoring Storm topologies in pure Python. NOTE: The base Storm package provides storm.py, which

AirSage 247 Dec 18, 2021
Visualise top-rated GitHub repositories in a barchart by keyword

This python script was written for simple purpose -- to visualise top-rated GitHub repositories in a barchart by keyword. Script generates html-page with barchart and information about repository own

Cur1iosity 2 Feb 07, 2022
A Python toolbox for gaining geometric insights into high-dimensional data

"To deal with hyper-planes in a 14 dimensional space, visualize a 3D space and say 'fourteen' very loudly. Everyone does it." - Geoff Hinton Overview

Contextual Dynamics Laboratory 1.8k Dec 29, 2022
A tool to plot and execute Rossmos's Formula, that helps to catch serial criminals using mathematics

Rossmo Plotter A tool to plot and execute Rossmos's Formula using python, that helps to catch serial criminals using mathematics Author: Amlan Saha Ku

Amlan Saha Kundu 3 Aug 29, 2022