The official colors of the FAU as matplotlib/seaborn colormaps

Overview

FAU - Colors

PyPI GitHub Code style: black PyPI - Downloads GitHub commit activity

The official colors of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) as matplotlib / seaborn colormaps.

We support the old colors based on the 2019 CI-guidelines and the brand new 2021 Brand redesign.

Installation

pip install fau-colors

Quick Guide

2021 colormaps

2021 colors

import seaborn as sns

from fau_colors import register_cmaps
register_cmaps()

sns.set_palette("tech")

2019 colormaps

2019 colors

import seaborn as sns

from fau_colors.v2019 import register_cmaps
register_cmaps()

sns.set_palette("tech")

General Usage

The 2019 and the 2021 colors are available in the separate submodules fau_colors.v2019 and fau_colors.v2021 that contain equivalent functions.

Note: For convenience, the v2021 colors can also be accessed from the top-level. In the following examples we will use this shorter notation.

The methods below show the usage with the new color scheme. For the old colors simply replace the module name.

Registering color palettes

The easiest way to use the provided color palettes is to register them as global matplotlib colormaps. This can be done by calling the register_cmaps() function from the respective submodule. All available cmaps can be seen in the images above.

2021 colors

>>> from fau_colors import register_cmaps  # v2021 colors
>>> register_cmaps()

2019 colors

>>> from fau_colors.v2019 import register_cmaps
>>> register_cmaps()

WARNING: The 2019 and 2021 cmaps have overlapping names! This means you can not register both at the same time. You need to call unregister_cmaps from the correct module first, before you can register the other colormaps. If you need colormaps from both CI-guides, use them individually, as shown below.

Getting the raw colors

All primary faculty colors are stored in a namedtuple called colors.

2021 colors

>>> from fau_colors import colors  # v2021 colors
>>> colors
FacultyColors(fau='#002F6C', tech='#779FB5', phil='#FFB81C', med='#00A3E0', nat='#43B02A', wiso='#C8102E')
>>> colors.fau
'#002F6C'

2019 colors

>>> from fau_colors.v2019 import colors
>>> colors
FacultyColors(fau='#003865', tech='#98a4ae', phil='#c99313', med='#00b1eb', nat='#009b77', wiso='#8d1429')
>>> colors.fau
'##003865'

For the 2021 color scheme also the variable colors_dark and colors_all are available. They contain the dark variant of each color, as well as light and dark colors combined, respectively.

Manually getting the colormaps

The colormaps are stored in a namedtuple called cmaps. There are colormaps for the primary colors and colormaps with varying lightness using each color as the base color. The latter colormaps contain 5 colors each with 12.5, 25, 37.5, 62.5, and 100% value of the base color. If you need more than 5 colors see below.

2021 colors

>>> from fau_colors import cmaps  # v2021 colors
>>> # Only get the names here
>>> cmaps._fields
('faculties', 'faculties_dark', 'faculties_all', 'fau', 'fau_dark', 'tech', 'tech_dark', 'phil', 'phil_dark', 'med', 'med_dark', 'nat', 'nat_dark', 'wiso', 'wiso_dark')
>>> cmaps.fau_dark
[(0.01568627450980392, 0.11764705882352941, 0.25882352941176473), (0.3823913879277201, 0.4463667820069205, 0.5349480968858131), (0.629434832756632, 0.6678200692041523, 0.7209688581314879), (0.7529565551710881, 0.7785467128027682, 0.8139792387543252), (0.876478277585544, 0.889273356401384, 0.9069896193771626)]
>>> import seaborn as sns
>>> sns.set_palette(cmaps.fau_dark)

2019 colors

>>> from fau_colors.v2019 import cmaps
>>> # Only get the names here
>>> cmaps._fields
('faculties', 'fau', 'tech', 'phil', 'med', 'nat', 'wiso')
>>> cmaps.fau
[(0.0, 0.2196078431372549, 0.396078431372549), (0.37254901960784315, 0.5103421760861206, 0.6210688196847366), (0.6235294117647059, 0.7062053056516724, 0.772641291810842), (0.7490196078431373, 0.8041368704344483, 0.8484275278738946), (0.8745098039215686, 0.9020684352172241, 0.9242137639369473)]
>>> import seaborn as sns
>>> sns.set_palette(cmaps.fau)

Modifying the colormaps

Sometimes five colors are not enough for a colormap. The easiest way to generate more colors is to use one of the FAU colors as base and then create custom sequential palettes from it. This can be done using sns.light_palette or sns.dark_palette, as explained here.

2021 colors

>>> from fau_colors import colors  # v2021 colors
>>> import seaborn as sns
>>> sns.light_palette(colors.med, n_colors=8)
[(0.9370639121761148, 0.9445189791516921, 0.9520035391049294), (0.8047725363394869, 0.9014173378043252, 0.9416168802970363), (0.6688064000629526, 0.8571184286417537, 0.9309417031889239), (0.5365150242263246, 0.8140167872943868, 0.9205550443810308), (0.40054888794979027, 0.7697178781318151, 0.9098798672729183), (0.2682575121131623, 0.7266162367844482, 0.8994932084650251), (0.13229137583662798, 0.6823173276218767, 0.8888180313569127), (0.0, 0.6392156862745098, 0.8784313725490196)]

2019 colors

>>> from fau_colors.v2019 import colors
>>> import seaborn as sns
>>> sns.light_palette(colors.med, n_colors=8)
[(0.9363137612705862, 0.94473936725293, 0.9520047198366567), (0.8041282890912094, 0.9093574773431737, 0.9477078597351495), (0.6682709982401831, 0.8729927571581465, 0.9432916424086003), (0.5360855260608062, 0.8376108672483904, 0.9389947823070931), (0.40022823520978, 0.8012461470633632, 0.9345785649805439), (0.2680427630304031, 0.765864257153607, 0.9302817048790367), (0.13218547217937693, 0.7294995369685797, 0.9258654875524875), (0.0, 0.6941176470588235, 0.9215686274509803)]c
You might also like...
:small_red_triangle: Ternary plotting library for python with matplotlib
:small_red_triangle: Ternary plotting library for python with matplotlib

python-ternary This is a plotting library for use with matplotlib to make ternary plots plots in the two dimensional simplex projected onto a two dime

Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

A python package for animating plots build on matplotlib.
A python package for animating plots build on matplotlib.

animatplot A python package for making interactive as well as animated plots with matplotlib. Requires Python = 3.5 Matplotlib = 2.2 (because slider

matplotlib: plotting with Python
matplotlib: plotting with Python

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Check out our home page for more inform

Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

:small_red_triangle: Ternary plotting library for python with matplotlib
:small_red_triangle: Ternary plotting library for python with matplotlib

python-ternary This is a plotting library for use with matplotlib to make ternary plots plots in the two dimensional simplex projected onto a two dime

Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

A python package for animating plots build on matplotlib.
A python package for animating plots build on matplotlib.

animatplot A python package for making interactive as well as animated plots with matplotlib. Requires Python = 3.5 Matplotlib = 2.2 (because slider

Painlessly create beautiful matplotlib plots.
Painlessly create beautiful matplotlib plots.

Announcement Thank you to everyone who has used prettyplotlib and made it what it is today! Unfortunately, I no longer have the bandwidth to maintain

Comments
Releases(v1.4.3)
Owner
Machine Learning and Data Analytics Lab FAU
Public projects of the Machine Learning and Data Analytics Lab at the Friedrich-Alexander-University Erlangen-Nürnberg
Machine Learning and Data Analytics Lab FAU
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Altair 8k Jan 05, 2023
Python package for hypergraph analysis and visualization.

The HyperNetX library provides classes and methods for the analysis and visualization of complex network data. HyperNetX uses data structures designed to represent set systems containing nested data

Pacific Northwest National Laboratory 304 Dec 27, 2022
Lightweight data validation and adaptation Python library.

Valideer Lightweight data validation and adaptation library for Python. At a Glance: Supports both validation (check if a value is valid) and adaptati

Podio 258 Nov 22, 2022
A gui application to visualize various sorting algorithms using pure python.

Sorting Algorithm Visualizer A gui application to visualize various sorting algorithms using pure python. Language : Python 3 Libraries required Tkint

Rajarshi Banerjee 19 Nov 30, 2022
Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.

py-self-organizing-maps Simple implementation of self-organizing maps (SOMs) A SOM is an unsupervised method for learning a mapping from a discrete ne

Jonas Grebe 6 Nov 22, 2022
Small project to recursively calculate and plot each successive order of the Hilbert Curve

hilbert-curve Small project to recursively calculate and plot each successive order of the Hilbert Curve. After watching 3Blue1Brown's video on Hilber

Stefan Mejlgaard 2 Nov 15, 2021
A Python Binder that merge 2 files with any extension by creating a new python file and compiling it to exe which runs both payloads.

Update ! ANONFILE MIGHT NOT WORK ! About A Python Binder that merge 2 files with any extension by creating a new python file and compiling it to exe w

Vesper 15 Oct 12, 2022
Python toolkit for defining+simulating+visualizing+analyzing attractors, dynamical systems, iterated function systems, roulette curves, and more

Attractors A small module that provides functions and classes for very efficient simulation and rendering of iterated function systems; dynamical syst

1 Aug 04, 2021
Runtime analysis of code with plotting

Runtime analysis of code with plotting A quick comparison among Python, Cython, and the C languages A Programming Assignment regarding the Programming

Cena Ashoori 2 Dec 24, 2021
阴阳师后台全平台(使用网易 MuMu 模拟器)辅助。支持御魂,觉醒,御灵,结界突破,秘闻副本,地域鬼王。

阴阳师后台全平台辅助 Python 版本:Python 3.8.3 模拟器:网易 MuMu | 雷电模拟器 模拟器分辨率:1024*576 显卡渲染模式:兼容(OpenGL) 兼容 Windows 系统和 MacOS 系统 思路: 利用 adb 截图后,使用 opencv 找图找色,模拟点击。使用

简讯 27 Jul 09, 2022
China and India Population and GDP Visualization

China and India Population and GDP Visualization Historical Population Comparison between India and China This graph shows the population data of Indi

Nicolas De Mello 10 Oct 27, 2021
Generating interfaces(CLI, Qt GUI, Dash web app) from a Python function.

oneFace is a Python library for automatically generating multiple interfaces(CLI, GUI, WebGUI) from a callable Python object. oneFace is an easy way t

NaNg 31 Oct 21, 2022
Learning Convolutional Neural Networks with Interactive Visualization.

CNN Explainer An interactive visualization system designed to help non-experts learn about Convolutional Neural Networks (CNNs) For more information,

Polo Club of Data Science 6.3k Jan 01, 2023
Personal IMDB Graphs with Bokeh

Personal IMDB Graphs with Bokeh Do you like watching movies and also rate all of them in IMDB? Would you like to look at your IMDB stats based on your

2 Dec 15, 2021
Using SQLite within Python to create database and analyze Starcraft 2 units data (Pandas also used)

SQLite python Starcraft 2 English This project shows the usage of SQLite with python. To create, modify and communicate with the SQLite database from

1 Dec 30, 2021
Bcc2telegraf: An integration that sends ebpf-based bcc histogram metrics to telegraf daemon

bcc2telegraf bcc2telegraf is an integration that sends ebpf-based bcc histogram

Peter Bobrov 2 Feb 17, 2022
Data Visualization Guide for Presentations, Reports, and Dashboards

This is a highly practical and example-based guide on visually representing data in reports and dashboards.

Anton Zhiyanov 395 Dec 29, 2022
Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner

streamlit-dashboards Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner Tutorial Video https://ww

122 Dec 21, 2022
termplotlib is a Python library for all your terminal plotting needs.

termplotlib termplotlib is a Python library for all your terminal plotting needs. It aims to work like matplotlib. Line plots For line plots, termplot

Nico Schlömer 553 Dec 30, 2022
This repository contains a streaming Dataflow pipeline written in Python with Apache Beam, reading data from PubSub.

Sample streaming Dataflow pipeline written in Python This repository contains a streaming Dataflow pipeline written in Python with Apache Beam, readin

Israel Herraiz 9 Mar 18, 2022