Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

Overview

JoyPy

PyPI version python version Build Status License: MIT Downloads

JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots).

A joyplot.

The code for JoyPy borrows from the code for kdes in pandas.plotting, and uses a couple of utility functions therein.

What are joyplots?

Joyplots are stacked, partially overlapping density plots, simple as that. They are a nice way to plot data to visually compare distributions, especially those that change across one dimension (e.g., over time). Though hardly a new technique, they have become very popular lately thanks to the R package ggjoy (which is much better developed/maintained than this one -- and I strongly suggest you use that if you can use R and ggplot.) Update: the ggjoy package has now been renamed ggridges.

Why are they called joyplots?

If you don't know Joy Division, you are lucky: you can still listen to them for the first time! Here's a hint: google "Unknown Pleasures". This kind of plot is now also known as ridgeline plot, since the original name is controversial.

Documentation and examples

JoyPy has no real documentation. You're strongly encouraged to take a look at this jupyter notebook with a growing number of examples. Similarly, github issues may contain some wisdom :-)

A minimal example is the following:

import joypy
import pandas as pd

iris = pd.read_csv("data/iris.csv")
fig, axes = joypy.joyplot(iris)

By default, joypy.joyplot() will draw joyplot with a density subplot for each numeric column in the dataframe. The density is obtained with the gaussian_kde function of scipy.

Note: joyplot() returns n+1 axes, where n is the number of visible rows (subplots). Each subplot has its own axis, while the last axis (axes[-1]) is the one that is used for things such as plotting the background or changing xticks, and is the one you might need to play with in case you want to manually tweak something.

Dependencies

  • Python 3.5+
    Compatibility with python 2.7 has been dropped with release 0.2.0.

  • numpy

  • scipy >= 0.11

  • matplotlib

  • pandas >= 0.20 Warning: compatibility with pandas >= 0.25 requires joypy >= 0.2.1

Not sure what are the oldest supported versions. As long as you have somewhat recent versions, you should be fine.

Installation

It's actually on PyPI, because why not:

pip install joypy

To install from github, run:

git clone [email protected]:sbebo/joypy.git
cd joypy
pip install .

License

Released under the MIT license.

Disclaimer + contributing

This is just a sunday afternoon hack, so no guarantees! If you want to contribute or just copy/fork, feel free to.

Owner
Leonardo Taccari
Leonardo Taccari
Matplotlib tutorial for beginner

matplotlib is probably the single most used Python package for 2D-graphics. It provides both a very quick way to visualize data from Python and publication-quality figures in many formats. We are goi

Nicolas P. Rougier 2.6k Dec 28, 2022
An adaptable Snakemake workflow which uses GATKs best practice recommendations to perform germline mutation calling starting with BAM files

Germline Mutation Calling This Snakemake workflow follows the GATK best-practice recommandations to call small germline variants. The pipeline require

12 Dec 24, 2022
Generate "Jupiter" plots for circular genomes

jupiter Generate "Jupiter" plots for circular genomes Description Python scripts to generate plots from ViennaRNA output. Written in "pidgin" python w

Robert Edgar 2 Nov 29, 2021
This Crash Course will cover all you need to know to start using Plotly in your projects.

Plotly Crash Course This course was designed to help you get started using Plotly. If you ever felt like your data visualization skills could use an u

Fábio Neves 2 Aug 21, 2022
BrowZen correlates your emotional states with the web sites you visit to give you actionable insights about how you spend your time browsing the web.

BrowZen BrowZen correlates your emotional states with the web sites you visit to give you actionable insights about how you spend your time browsing t

Nick Bild 36 Sep 28, 2022
Bokeh Plotting Backend for Pandas and GeoPandas

Pandas-Bokeh provides a Bokeh plotting backend for Pandas, GeoPandas and Pyspark DataFrames, similar to the already existing Visualization feature of

Patrik Hlobil 822 Jan 07, 2023
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022
Library for exploring and validating machine learning data

TensorFlow Data Validation TensorFlow Data Validation (TFDV) is a library for exploring and validating machine learning data. It is designed to be hig

688 Jan 03, 2023
Pydrawer: The Python package for visualizing curves and linear transformations in a super simple way

pydrawer 📐 The Python package for visualizing curves and linear transformations in a super simple way. ✏️ Installation Install pydrawer package with

Dylan Tintenfich 56 Dec 30, 2022
Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset.

Visualization-of-Human3.6M-Dataset Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset. human-motion-prediction

Gaurav Kumar Yadav 5 Nov 18, 2022
Interactive Data Visualization in the browser, from Python

Bokeh is an interactive visualization library for modern web browsers. It provides elegant, concise construction of versatile graphics, and affords hi

Bokeh 17.1k Dec 31, 2022
Here I plotted data for the average test scores across schools and class sizes across school districts.

HW_02 Here I plotted data for the average test scores across schools and class sizes across school districts. Average Test Score by Race This graph re

7 Oct 27, 2021
Data Visualization Guide for Presentations, Reports, and Dashboards

This is a highly practical and example-based guide on visually representing data in reports and dashboards.

Anton Zhiyanov 395 Dec 29, 2022
Data parsing and validation using Python type hints

pydantic Data validation and settings management using Python type hinting. Fast and extensible, pydantic plays nicely with your linters/IDE/brain. De

Samuel Colvin 12.1k Jan 06, 2023
Create matplotlib visualizations from the command-line

MatplotCLI Create matplotlib visualizations from the command-line MatplotCLI is a simple utility to quickly create plots from the command-line, levera

Daniel Moura 46 Dec 16, 2022
Python wrapper for Synoptic Data API. Retrieve data from thousands of mesonet stations and networks. Returns JSON from Synoptic as Pandas DataFrame

☁ Synoptic API for Python (unofficial) The Synoptic Mesonet API (formerly MesoWest) gives you access to real-time and historical surface-based weather

Brian Blaylock 23 Jan 06, 2023
Python module for drawing and rendering beautiful atoms and molecules using Blender.

Batoms is a Python package for editing and rendering atoms and molecules objects using blender. A Python interface that allows for automating workflows.

Xing Wang 1 Jul 06, 2022
Fast scatter density plots for Matplotlib

About Plotting millions of points can be slow. Real slow... 😴 So why not use density maps? ⚡ The mpl-scatter-density mini-package provides functional

Thomas Robitaille 473 Dec 12, 2022
Interactive Dashboard for Visualizing OSM Data Change

Dashboard and intuitive data downloader for more interactive experience with interpreting osm change data.

1 Feb 20, 2022
Frbmclust - Clusterize FRB profiles using hierarchical clustering, plot corresponding parameters distributions

frbmclust Getting Started Clusterize FRB profiles using hierarchical clustering,

3 May 06, 2022