demir.ai Dataset Operations

Overview

demir.ai Dataset Operations

With this application, you can have the empty values (nan/null) deleted or filled before giving your dataset to machine learning algorithms, you can access visual or numerical information about your dataset and have more detailed information about your attributes.

The application is written in Python programming language, Flask framework is used in the backend, Html is used in the frontent. Pandas framework is used to navigate over the dataset, all numerical operations on the dataset were written by me and no ready-made functions were used, while the plots were created from scratch by me using the Opencv framework.

Before running the application, you can install the necessary packages for the application with the following command.

pip3 install -r requirements.txt

You can launch the web application with the following command, and then you can use the application by going to http://localhost:5000/.

python3 main.py

With this web application, you can delete rows or columns with empty values (nan/null) on your dataset or fill these empty values in three different ways.

  • Null value (nan) operations you can do on your dataset with demir.ai Dataset Operations:

    • Column-based deletion of null data (nan/null)
    • Row-based deletion of null data (nan/null)
    • Filling in blank data by mean, median and mode

Again, thanks to this web application, you can reach visual or numerical results about your dataset and have detailed information about your dataset.

  • Information you can learn about your dataset with demir.ai Dataset Operations:

    • Mean of columns
    • Median of columns
    • Mode of columns
    • Frequency of columns
    • Interquartile range value (IQR) of columns
    • Outliers of columns
    • Five number summary of columns
    • Box Chart of columns
    • Variance and standard deviation of columns

Null value (nan/null) operations

  • Column-based deletion of null data (nan/null): The number of nulls is calculated for each column, then the percentage of nulls is calculated and if this percentage is greater than the percentage the user enters, this column is deleted.

  • Row-based deletion of null data (nan/null): The number of nulls is calculated for each line, and if this number of nulls is greater than the number entered by the user, this line is deleted.

  • Filling in blank data by mean, median and mode:

    • Mean: The sum of the non-blank values of the columns is taken and divided by the total number of non-blank values, the average obtained is written instead of the empty values.

    • Median: The median is calculated according to the non-blank values in the columns, and then this median value is written instead of the empty columns.

    • Mode: The mode is calculated according to the non-blank values in the columns, and then this mode value is written instead of the empty columns

Information you can learn about your dataset

  • Mean of columns: The mean is calculated for each column separately and the column mean information is presented to the user.

  • Median of columns: The median is calculated for each column separately and the column median information is presented to the user.

  • Mode of columns: The mode is calculated for each column separately and the column mode information is presented to the user.

  • Frequency of columns: Frequency is calculated for each column and the frequency information of the columns is presented to the user. In this section, frequency visualization is also done by creating a bar plot from scratch with Opencv.

  • Interquartile range value (IQR) of columns: Q1 and Q3 values are found for each column, then the IQR value of the columns is found with Q3-Q1 and presented to the user.

  • Outliers of columns: If the data in the column is less than (Q1-IQR * 1.5) and greater than (Q3+IQR * 1.5), it is called outlier and this information is presented to the user.

  • Five number summary of columns: Minimum, Q1, median, Q3 and Maximum values are calculated and presented to the user.

  • Box Chart of columns: After finding the minimum, Q1, median, Q3 and maximum values for each column, a box chart is created from scratch with Opencv and this chart is presented to the user.

  • Variance and standard deviation of columns: The variance and standard deviation for each column are calculated and presented to the user.

Application video

demirai.mp4
Owner
Ahmet Furkan DEMIR
Hi, my name is Ahmet Furkan DEMIR. I study computer engineering at Necmettin Erbakan University.
Ahmet Furkan DEMIR
A simple python script using Numpy and Matplotlib library to plot a Mohr's Circle when given a two-dimensional state of stress.

Mohr's Circle Calculator This is a really small personal project done for Department of Civil Engineering, Delhi Technological University (formerly, D

Agyeya Mishra 0 Jul 17, 2021
Visualize your pandas data with one-line code

PandasEcharts 简介 基于pandas和pyecharts的可视化工具 安装 pip 安装 $ pip install pandasecharts 源码安装 $ git clone https://github.com/gamersover/pandasecharts $ cd pand

陈华杰 2 Apr 13, 2022
Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Michael Waskom 10.2k Dec 30, 2022
An easy to use burndown chart generator for GitHub Project Boards.

Burndown Chart for GitHub Projects An easy to use burndown chart generator for GitHub Project Boards. Table of Contents Features Installation Assumpti

Joseph Hale 15 Dec 28, 2022
NW 2022 Hackathon Project by Angelique Clara Hanzel, Aryan Sonik, Damien Fung, Ramit Brata Biswas

Spiral-Data-Visualizer NW 2022 Hackathon Project by Angelique Clara Hanzell, Aryan Sonik, Damien Fung, Ramit Brata Biswas Description This project vis

Damien Fung 2 Jan 16, 2022
Here I plotted data for the average test scores across schools and class sizes across school districts.

HW_02 Here I plotted data for the average test scores across schools and class sizes across school districts. Average Test Score by Race This graph re

7 Oct 27, 2021
These data visualizations were created as homework for my CS40 class. I hope you enjoy!

Data Visualizations These data visualizations were created as homework for my CS40 class. I hope you enjoy! Nobel Laureates by their Country of Birth

9 Sep 02, 2022
Bcc2telegraf: An integration that sends ebpf-based bcc histogram metrics to telegraf daemon

bcc2telegraf bcc2telegraf is an integration that sends ebpf-based bcc histogram

Peter Bobrov 2 Feb 17, 2022
Gesture controlled media player

Media Player Gesture Control Gesture controller for media player with MediaPipe, VLC and OpenCV. Contents About Setup About A tool for using gestures

Atharva Joshi 2 Dec 22, 2021
🧇 Make Waffle Charts in Python.

PyWaffle PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts. It provides a Figure constructor class Waffle, which coul

Guangyang Li 528 Jan 02, 2023
YOPO is an interactive dashboard which generates various standard plots.

YOPO is an interactive dashboard which generates various standard plots.you can create various graphs and charts with a click of a button. This tool uses Dash and Flask in backend.

ADARSH C 38 Dec 20, 2022
This is simply repo for line drawing rendering using freestyle in Blender.

blender_freestyle_line_drawing This is simply repo for line drawing rendering using freestyle in Blender. how to use blender2935 --background --python

MaxLin 3 Jul 02, 2022
An intuitive library to add plotting functionality to scikit-learn objects.

Welcome to Scikit-plot Single line functions for detailed visualizations The quickest and easiest way to go from analysis... ...to this. Scikit-plot i

Reiichiro Nakano 2.3k Dec 31, 2022
Small U-Net for vehicle detection

Small U-Net for vehicle detection Vivek Yadav, PhD Overview In this repository , we will go over using U-net for detecting vehicles in a video stream

Vivek Yadav 91 Nov 03, 2022
LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

MLH Fellowship 7 Oct 05, 2022
A little logger for machine learning research

Blinker Blinker provides a fast dispatching system that allows any number of interested parties to subscribe to events, or "signals". Signal receivers

Reinforcement Learning Working Group 27 Dec 03, 2022
An interactive UMAP visualization of the MNIST data set.

Code for an interactive UMAP visualization of the MNIST data set. Demo at https://grantcuster.github.io/umap-explorer/. You can read more about the de

grant 70 Dec 27, 2022
GitHub English Top Charts

Help you discover excellent English projects and get rid of the interference of other spoken language.

kon9chunkit 529 Jan 02, 2023
Info for The Great DataTas plot-a-thon

The Great DataTas plot-a-thon Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data

2 Nov 21, 2021
ipyvizzu - Jupyter notebook integration of Vizzu

ipyvizzu - Jupyter notebook integration of Vizzu. Tutorial · Examples · Repository About The Project ipyvizzu is the Jupyter Notebook integration of V

Vizzu 729 Jan 08, 2023