demir.ai Dataset Operations

Overview

demir.ai Dataset Operations

With this application, you can have the empty values (nan/null) deleted or filled before giving your dataset to machine learning algorithms, you can access visual or numerical information about your dataset and have more detailed information about your attributes.

The application is written in Python programming language, Flask framework is used in the backend, Html is used in the frontent. Pandas framework is used to navigate over the dataset, all numerical operations on the dataset were written by me and no ready-made functions were used, while the plots were created from scratch by me using the Opencv framework.

Before running the application, you can install the necessary packages for the application with the following command.

pip3 install -r requirements.txt

You can launch the web application with the following command, and then you can use the application by going to http://localhost:5000/.

python3 main.py

With this web application, you can delete rows or columns with empty values (nan/null) on your dataset or fill these empty values in three different ways.

  • Null value (nan) operations you can do on your dataset with demir.ai Dataset Operations:

    • Column-based deletion of null data (nan/null)
    • Row-based deletion of null data (nan/null)
    • Filling in blank data by mean, median and mode

Again, thanks to this web application, you can reach visual or numerical results about your dataset and have detailed information about your dataset.

  • Information you can learn about your dataset with demir.ai Dataset Operations:

    • Mean of columns
    • Median of columns
    • Mode of columns
    • Frequency of columns
    • Interquartile range value (IQR) of columns
    • Outliers of columns
    • Five number summary of columns
    • Box Chart of columns
    • Variance and standard deviation of columns

Null value (nan/null) operations

  • Column-based deletion of null data (nan/null): The number of nulls is calculated for each column, then the percentage of nulls is calculated and if this percentage is greater than the percentage the user enters, this column is deleted.

  • Row-based deletion of null data (nan/null): The number of nulls is calculated for each line, and if this number of nulls is greater than the number entered by the user, this line is deleted.

  • Filling in blank data by mean, median and mode:

    • Mean: The sum of the non-blank values of the columns is taken and divided by the total number of non-blank values, the average obtained is written instead of the empty values.

    • Median: The median is calculated according to the non-blank values in the columns, and then this median value is written instead of the empty columns.

    • Mode: The mode is calculated according to the non-blank values in the columns, and then this mode value is written instead of the empty columns

Information you can learn about your dataset

  • Mean of columns: The mean is calculated for each column separately and the column mean information is presented to the user.

  • Median of columns: The median is calculated for each column separately and the column median information is presented to the user.

  • Mode of columns: The mode is calculated for each column separately and the column mode information is presented to the user.

  • Frequency of columns: Frequency is calculated for each column and the frequency information of the columns is presented to the user. In this section, frequency visualization is also done by creating a bar plot from scratch with Opencv.

  • Interquartile range value (IQR) of columns: Q1 and Q3 values are found for each column, then the IQR value of the columns is found with Q3-Q1 and presented to the user.

  • Outliers of columns: If the data in the column is less than (Q1-IQR * 1.5) and greater than (Q3+IQR * 1.5), it is called outlier and this information is presented to the user.

  • Five number summary of columns: Minimum, Q1, median, Q3 and Maximum values are calculated and presented to the user.

  • Box Chart of columns: After finding the minimum, Q1, median, Q3 and maximum values for each column, a box chart is created from scratch with Opencv and this chart is presented to the user.

  • Variance and standard deviation of columns: The variance and standard deviation for each column are calculated and presented to the user.

Application video

demirai.mp4
Owner
Ahmet Furkan DEMIR
Hi, my name is Ahmet Furkan DEMIR. I study computer engineering at Necmettin Erbakan University.
Ahmet Furkan DEMIR
This is a web application to visualize various famous technical indicators and stocks tickers from user

Visualizing Technical Indicators Using Python and Plotly. Currently facing issues hosting the application on heroku. As soon as I am able to I'll like

4 Aug 04, 2022
A concise grammar of interactive graphics, built on Vega.

Vega-Lite Vega-Lite provides a higher-level grammar for visual analysis that generates complete Vega specifications. You can find more details, docume

Vega 4k Jan 08, 2023
JSNAPY example: Validate NAT policies

JSNAPY example: Validate NAT policies Overview This example will show how to use JSNAPy to make sure the expected NAT policy matches are taking place.

Calvin Remsburg 1 Jan 07, 2022
Cryptocurrency Centralized Exchange Visualization

This is a simple one that uses Grafina to visualize cryptocurrency from the Bitkub exchange. This service will make a request to the Bitkub API from your wallet and save the response to Postgresql. G

Popboon Mahachanawong 1 Nov 24, 2021
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Altair 8k Jan 05, 2023
finds grocery stores and stuff next to route (gpx)

Route-Report Route report is a command-line utility that can be used to locate points-of-interest near your planned route (gpx). The results are based

Clemens Mosig 5 Oct 10, 2022
:bowtie: Create a dashboard with python!

Installation | Documentation | Gitter Chat | Google Group Bowtie Introduction Bowtie is a library for writing dashboards in Python. No need to know we

Jacques Kvam 753 Dec 22, 2022
A simple agent-based model used to teach the basics of OOP in my lectures

Pydemic A simple agent-based model of a pandemic. This is used to teach basic principles of object-oriented programming to master students. It is not

Fabien Maussion 2 Jun 08, 2022
An(other) implementation of JSON Schema for Python

jsonschema jsonschema is an implementation of JSON Schema for Python. from jsonschema import validate # A sample schema, like what we'd get f

Julian Berman 4k Jan 04, 2023
PanGraphViewer -- show panenome graph in an easy way

PanGraphViewer -- show panenome graph in an easy way Table of Contents Versions and dependences Desktop-based panGraphViewer Library installation for

16 Dec 17, 2022
A pandas extension that solves all problems of Jalai/Iraninan/Shamsi dates

Jalali Pandas Extentsion A pandas extension that solves all problems of Jalai/Iraninan/Shamsi dates Features Series Extenstion Convert string to Jalal

51 Jan 02, 2023
Create Badges with stats of Scratch User, Project and Studio. Use those badges in Github readmes, etc.

Scratch-Stats-Badge Create customized Badges with stats of Scratch User, Studio or Project. Use those badges in Github readmes, etc. Examples Document

Siddhesh Chavan 5 Aug 28, 2022
Personal IMDB Graphs with Bokeh

Personal IMDB Graphs with Bokeh Do you like watching movies and also rate all of them in IMDB? Would you like to look at your IMDB stats based on your

2 Dec 15, 2021
Bar Chart of the number of Senators from each party who are up for election in the next three General Elections

Congress-Analysis Bar Chart of the number of Senators from each party who are up for election in the next three General Elections This bar chart shows

11 Oct 26, 2021
Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax.

PyDexter Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax. Setup $ pip install PyDexter

D3xter 31 Mar 06, 2021
Seismic Waveform Inversion Toolbox-1.0

Seismic Waveform Inversion Toolbox (SWIT-1.0)

Haipeng Li 98 Dec 29, 2022
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022
Chem: collection of mostly python code for molecular visualization, QM/MM, FEP, etc

chem: collection of mostly python code for molecular visualization, QM/MM, FEP,

5 Sep 02, 2022
Dipto Chakrabarty 7 Sep 06, 2022
Regress.me is an easy to use data visualization tool powered by Dash/Plotly.

Regress.me Regress.me is an easy to use data visualization tool powered by Dash/Plotly. Regress.me.-.Google.Chrome.2022-05-10.15-58-59.mp4 Get Started

Amar 14 Aug 14, 2022