demir.ai Dataset Operations

Overview

demir.ai Dataset Operations

With this application, you can have the empty values (nan/null) deleted or filled before giving your dataset to machine learning algorithms, you can access visual or numerical information about your dataset and have more detailed information about your attributes.

The application is written in Python programming language, Flask framework is used in the backend, Html is used in the frontent. Pandas framework is used to navigate over the dataset, all numerical operations on the dataset were written by me and no ready-made functions were used, while the plots were created from scratch by me using the Opencv framework.

Before running the application, you can install the necessary packages for the application with the following command.

pip3 install -r requirements.txt

You can launch the web application with the following command, and then you can use the application by going to http://localhost:5000/.

python3 main.py

With this web application, you can delete rows or columns with empty values (nan/null) on your dataset or fill these empty values in three different ways.

  • Null value (nan) operations you can do on your dataset with demir.ai Dataset Operations:

    • Column-based deletion of null data (nan/null)
    • Row-based deletion of null data (nan/null)
    • Filling in blank data by mean, median and mode

Again, thanks to this web application, you can reach visual or numerical results about your dataset and have detailed information about your dataset.

  • Information you can learn about your dataset with demir.ai Dataset Operations:

    • Mean of columns
    • Median of columns
    • Mode of columns
    • Frequency of columns
    • Interquartile range value (IQR) of columns
    • Outliers of columns
    • Five number summary of columns
    • Box Chart of columns
    • Variance and standard deviation of columns

Null value (nan/null) operations

  • Column-based deletion of null data (nan/null): The number of nulls is calculated for each column, then the percentage of nulls is calculated and if this percentage is greater than the percentage the user enters, this column is deleted.

  • Row-based deletion of null data (nan/null): The number of nulls is calculated for each line, and if this number of nulls is greater than the number entered by the user, this line is deleted.

  • Filling in blank data by mean, median and mode:

    • Mean: The sum of the non-blank values of the columns is taken and divided by the total number of non-blank values, the average obtained is written instead of the empty values.

    • Median: The median is calculated according to the non-blank values in the columns, and then this median value is written instead of the empty columns.

    • Mode: The mode is calculated according to the non-blank values in the columns, and then this mode value is written instead of the empty columns

Information you can learn about your dataset

  • Mean of columns: The mean is calculated for each column separately and the column mean information is presented to the user.

  • Median of columns: The median is calculated for each column separately and the column median information is presented to the user.

  • Mode of columns: The mode is calculated for each column separately and the column mode information is presented to the user.

  • Frequency of columns: Frequency is calculated for each column and the frequency information of the columns is presented to the user. In this section, frequency visualization is also done by creating a bar plot from scratch with Opencv.

  • Interquartile range value (IQR) of columns: Q1 and Q3 values are found for each column, then the IQR value of the columns is found with Q3-Q1 and presented to the user.

  • Outliers of columns: If the data in the column is less than (Q1-IQR * 1.5) and greater than (Q3+IQR * 1.5), it is called outlier and this information is presented to the user.

  • Five number summary of columns: Minimum, Q1, median, Q3 and Maximum values are calculated and presented to the user.

  • Box Chart of columns: After finding the minimum, Q1, median, Q3 and maximum values for each column, a box chart is created from scratch with Opencv and this chart is presented to the user.

  • Variance and standard deviation of columns: The variance and standard deviation for each column are calculated and presented to the user.

Application video

demirai.mp4
Owner
Ahmet Furkan DEMIR
Hi, my name is Ahmet Furkan DEMIR. I study computer engineering at Necmettin Erbakan University.
Ahmet Furkan DEMIR
Geocoding library for Python.

geopy geopy is a Python client for several popular geocoding web services. geopy makes it easy for Python developers to locate the coordinates of addr

geopy 3.8k Jan 02, 2023
Personal IMDB Graphs with Bokeh

Personal IMDB Graphs with Bokeh Do you like watching movies and also rate all of them in IMDB? Would you like to look at your IMDB stats based on your

2 Dec 15, 2021
🐞 📊 Ladybug extension to generate 2D charts

ladybug-charts Ladybug extension to generate 2D charts. Installation pip install ladybug-charts QuickStart import ladybug_charts API Documentation Loc

Ladybug Tools 3 Dec 30, 2022
A D3.js plugin that produces flame graphs from hierarchical data.

d3-flame-graph A D3.js plugin that produces flame graphs from hierarchical data. If you don't know what flame graphs are, check Brendan Gregg's post.

Martin Spier 740 Dec 29, 2022
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
JSNAPY example: Validate NAT policies

JSNAPY example: Validate NAT policies Overview This example will show how to use JSNAPy to make sure the expected NAT policy matches are taking place.

Calvin Remsburg 1 Jan 07, 2022
Small project to recursively calculate and plot each successive order of the Hilbert Curve

hilbert-curve Small project to recursively calculate and plot each successive order of the Hilbert Curve. After watching 3Blue1Brown's video on Hilber

Stefan Mejlgaard 2 Nov 15, 2021
Python module for drawing and rendering beautiful atoms and molecules using Blender.

Batoms is a Python package for editing and rendering atoms and molecules objects using blender. A Python interface that allows for automating workflows.

Xing Wang 1 Jul 06, 2022
Small project demonstrating the use of Grafana and InfluxDB for monitoring the speed of an internet connection

Speedtest monitor for Grafana A small project that allows internet speed monitoring using Grafana, InfluxDB 2 and Speedtest. Demo Requirements Docker

Joshua Ghali 3 Aug 06, 2021
Render Jupyter notebook in the terminal

jut - JUpyter notebook Terminal viewer. The command line tool view the IPython/Jupyter notebook in the terminal. Install pip install jut Usage $jut --

Kracekumar 169 Dec 27, 2022
Extensible, parallel implementations of t-SNE

openTSNE openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction al

Pavlin Poličar 1.1k Jan 03, 2023
Resources for teaching & learning practical data visualization with python.

Practical Data Visualization with Python Overview All views expressed on this site are my own and do not represent the opinions of any entity with whi

Paul Jeffries 98 Sep 24, 2022
This GitHub Repository contains Data Analysis projects that I have completed so far! While most of th project are focused on Data Analysis, some of them are also put here to show off other skills that I have learned.

Welcome to my Data Analysis projects page! This GitHub Repository contains Data Analysis projects that I have completed so far! While most of th proje

Kyle Dini 1 Jan 31, 2022
A site that displays up to date COVID-19 stats, powered by fastpages.

https://covid19dashboards.com This project was built with fastpages Background This project showcases how you can use fastpages to create a static das

GitHub 1.6k Jan 07, 2023
🐍PyNode Next allows you to easily create beautiful graph visualisations and animations

PyNode Next A complete rewrite of PyNode for the modern era. Up to five times faster than the original PyNode. PyNode Next allows you to easily create

ehne 3 Feb 12, 2022
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow with breakpoints + real-time visualization of the data flowing through the computational graph

TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow (Google's Deep Learning framework) with breakpoints + real-time visualization of the data flowing through the comput

Eric Jang 1.4k Dec 15, 2022
Voilà, install macOS on ANY Computer! This is really and magic easiest way!

OSX-PROXMOX - Run macOS on ANY Computer - AMD & Intel Install Proxmox VE v7.02 - Next, Next & Finish (NNF). Open Proxmox Web Console - Datacenter N

Gabriel Luchina 654 Jan 09, 2023
Set of matplotlib operations that are not trivial

Matplotlib Snippets This repository contains a set of matplotlib operations that are not trivial. Histograms Histogram with bins adapted to log scale

Raphael Meudec 1 Nov 15, 2021
Learn Basic to advanced level Data visualisation techniques from this Repository

Data visualisation Hey, You can learn Basic to advanced level Data visualisation techniques from this Repository. Data visualization is the graphic re

Shashank dwivedi 16 Jan 03, 2023
Data Analysis: Data Visualization of Airlines

Data Analysis: Data Visualization of Airlines Anderson Cruz | London-UK | Linkedin | Nowa Capital Project: Traffic Airlines Airline Reporting Carrier

Anderson Cruz 1 Feb 10, 2022