🧇 Make Waffle Charts in Python.

Overview

PyWaffle

PyPI version ReadTheDocs Binder

PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts.

It provides a Figure constructor class Waffle, which could be passed to matplotlib.pyplot.figure and generates a matplotlib Figure object.

PyPI Page: https://pypi.org/project/pywaffle/

Documentation: http://pywaffle.readthedocs.io/

Installation

pip install pywaffle

Requirements

  • Python 3.5+
  • Matplotlib

Examples

1. Value Scaling

import matplotlib.pyplot as plt
from pywaffle import Waffle
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    columns=10, 
    values=[48, 46, 6],
    figsize=(5, 3)
)
plt.show()

basic

The values are automatically scaled to 24, 23 and 3 to fit 5 * 10 chart size.

2. Values in dict & Auto-sizing

data = {'Democratic': 48, 'Republican': 46, 'Libertarian': 3}
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    values=data, 
    legend={'loc': 'upper left', 'bbox_to_anchor': (1.1, 1)}
)
plt.show()

Use values in dictionary; use absolute value as block number, without defining columns

In this example, since only rows is specified and columns is empty, absolute values in values are used as block numbers. Similarly, rows could also be optional if columns is specified.

If values is a dict, its keys are used as labels.

3. Title, Legend, Colors, Background Color, Block Color, Direction and Style

data = {'Democratic': 48, 'Republican': 46, 'Libertarian': 3}
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    values=data, 
    colors=["#232066", "#983D3D", "#DCB732"],
    title={'label': 'Vote Percentage in 2016 US Presidential Election', 'loc': 'left'},
    labels=[f"{k} ({v}%)" for k, v in data.items()],
    legend={'loc': 'lower left', 'bbox_to_anchor': (0, -0.4), 'ncol': len(data), 'framealpha': 0},
    starting_location='NW',
    block_arranging_style='snake'
)
fig.set_facecolor('#EEEEEE')
plt.show()

Add title, legend and background color; customize the block color

Many parameters, like title and legend, accept the same parameters as in Matplotlib.

4. Plot with Icons - Pictogram Chart

data = {'Democratic': 48, 'Republican': 46, 'Libertarian': 3}
fig = plt.figure(
    FigureClass=Waffle, 
    rows=5, 
    values=data, 
    colors=["#232066", "#983D3D", "#DCB732"],
    legend={'loc': 'upper left', 'bbox_to_anchor': (1, 1)},
    icons='child', 
    font_size=12, 
    icon_legend=True
)
plt.show()

Use Font Awesome icons

PyWaffle supports Font Awesome icons in the chart.

5. Multiple Plots in One Chart

import pandas as pd
data = pd.DataFrame(
    {
        'labels': ['Hillary Clinton', 'Donald Trump', 'Others'],
        'Virginia': [1981473, 1769443, 233715],
        'Maryland': [1677928, 943169, 160349],
        'West Virginia': [188794, 489371, 36258],
    },
).set_index('labels')

# A glance of the data:
#                  Maryland  Virginia  West Virginia
# labels                                            
# Hillary Clinton   1677928   1981473         188794
# Donald Trump       943169   1769443         489371
# Others             160349    233715          36258


fig = plt.figure(
    FigureClass=Waffle,
    plots={
        '311': {
            'values': data['Virginia'] / 30000,
            'labels': [f"{k} ({v})" for k, v in data['Virginia'].items()],
            'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.05, 1), 'fontsize': 8},
            'title': {'label': '2016 Virginia Presidential Election Results', 'loc': 'left'}
        },
        '312': {
            'values': data['Maryland'] / 30000,
            'labels': [f"{k} ({v})" for k, v in data['Maryland'].items()],
            'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.2, 1), 'fontsize': 8},
            'title': {'label': '2016 Maryland Presidential Election Results', 'loc': 'left'}
        },
        '313': {
            'values': data['West Virginia'] / 30000,
            'labels': [f"{k} ({v})" for k, v in data['West Virginia'].items()],
            'legend': {'loc': 'upper left', 'bbox_to_anchor': (1.3, 1), 'fontsize': 8},
            'title': {'label': '2016 West Virginia Presidential Election Results', 'loc': 'left'}
        },
    },
    rows=5,  # outside parameter applied to all subplots
    colors=["#2196f3", "#ff5252", "#999999"],  # outside parameter applied to all subplots
    figsize=(9, 5)
)
plt.show()

Multiple plots

In this chart, 1 block = 30000 votes.

Data source https://en.wikipedia.org/wiki/United_States_presidential_election,_2016.

Demo

Wanna try it yourself? There is Online Demo!

What's New

See CHANGELOG

License

  • PyWaffle is under MIT license, see LICENSE file for the details.
  • The Font Awesome font is licensed under the SIL OFL 1.1: http://scripts.sil.org/OFL
Owner
Guangyang Li
Guangyang Li
Use Perspective to create the chart for the trader’s dashboard

Task Overview | Installation Instructions | Link to Module 3 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 22, 2022
The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based metabolomics.

MINT (Metabolomics Integrator) The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based m

Sören Wacker 0 May 04, 2022
A python script editor for napari based on PyQode.

napari-script-editor A python script editor for napari based on PyQode. This napari plugin was generated with Cookiecutter using with @napari's cookie

Robert Haase 9 Sep 20, 2022
Manim is an animation engine for explanatory math videos.

A community-maintained Python framework for creating mathematical animations.

12.4k Dec 30, 2022
Cryptocurrency Centralized Exchange Visualization

This is a simple one that uses Grafina to visualize cryptocurrency from the Bitkub exchange. This service will make a request to the Bitkub API from your wallet and save the response to Postgresql. G

Popboon Mahachanawong 1 Nov 24, 2021
Render Jupyter notebook in the terminal

jut - JUpyter notebook Terminal viewer. The command line tool view the IPython/Jupyter notebook in the terminal. Install pip install jut Usage $jut --

Kracekumar 169 Dec 27, 2022
patchwork for matplotlib

patchworklib patchwork for matplotlib test code Preparation of example plots import seaborn as sns import numpy as np import pandas as pd #Bri

Mori Hideto 185 Jan 06, 2023
This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played till Jan 2022.

Scraping-test-matches-data This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played ti

Souradeep Banerjee 4 Oct 10, 2022
MPL Plotter is a Matplotlib based Python plotting library built with the goal of delivering publication-quality plots concisely.

MPL Plotter is a Matplotlib based Python plotting library built with the goal of delivering publication-quality plots concisely.

Antonio López Rivera 162 Nov 11, 2022
Lightweight, extensible data validation library for Python

Cerberus Cerberus is a lightweight and extensible data validation library for Python. v = Validator({'name': {'type': 'string'}}) v.validate({

eve 2.9k Dec 27, 2022
Getting started with Python, Dash and Plot.ly for the Data Dashboards team

data_dashboards Getting started with Python, Dash and Plot.ly for the Data Dashboards team Getting started MacOS users: # Install the pyenv version ma

Department for Levelling Up, Housing and Communities 1 Nov 08, 2021
GitHub Stats Visualizations : Transparent

GitHub Stats Visualizations : Transparent Generate visualizations of GitHub user and repository statistics using GitHub Actions. ⚠️ Disclaimer The pro

YuanYap 7 Apr 05, 2022
A tool for creating Toontown-style nametags in Panda3D

Toontown-Nametag Toontown-Nametag is a tool for creating Toontown Online/Toontown Rewritten-style nametags in Panda3D. It contains a function, createN

BoggoTV 2 Dec 23, 2021
Create SVG drawings from vector geodata files (SHP, geojson, etc).

SVGIS Create SVG drawings from vector geodata files (SHP, geojson, etc). SVGIS is great for: creating small multiples, combining lots of datasets in a

Neil Freeman 78 Dec 09, 2022
Simple, realtime visualization of neural network training performance.

pastalog Simple, realtime visualization server for training neural networks. Use with Lasagne, Keras, Tensorflow, Torch, Theano, and basically everyth

Rewon Child 416 Dec 29, 2022
Lightspin AWS IAM Vulnerability Scanner

Red-Shadow Lightspin AWS IAM Vulnerability Scanner Description Scan your AWS IAM Configuration for shadow admins in AWS IAM based on misconfigured den

Lightspin 90 Dec 14, 2022
This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and much more using Kibana Dashboard with Elasticsearch.

System Stats Visualizer This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and m

Vishal Teotia 5 Feb 06, 2022
🧇 Make Waffle Charts in Python.

PyWaffle PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts. It provides a Figure constructor class Waffle, which coul

Guangyang Li 528 Jan 02, 2023
Machine learning beginner to Kaggle competitor in 30 days. Non-coders welcome. The program starts Monday, August 2, and lasts four weeks. It's designed for people who want to learn machine learning.

30-Days-of-ML-Kaggle 🔥 About the Hands On Program 💻 Machine learning beginner → Kaggle competitor in 30 days. Non-coders welcome The program starts

Roja Achary 145 Jan 01, 2023