Compare outputs between layers written in Tensorflow and layers written in Pytorch

Overview

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch

This is our testing module for the implementation of improved WGAN in Pytorch

Prerequisites

How to run

Go to test directory and run python test_compare_tf_to.py

How we do it

We inject the same weights init and inputs into layers of TensorFlow and Pytorch that we want to compare. For example, we set 5e-2 for the weights of Conv2d layer in both TensorFlow and Pytorch. Then we passed the same random input to those 2 layers and finally we compared 2 outputs from TensorFlow tensor and Pytorch tensor.

We use cosine to calculate the distance between 2 outputs. Reference: scipy.spatial.distance.cosine

What were compared between TensorFlow and Pytorch

We've compared the implementation of several layers in WGAN model. They are:

  • Depth to space
  • Conv2d
  • ConvMeanPool
  • MeanPoolConv
  • UpsampleConv
  • ResidualBlock (up)
  • ResidualBlock (down)
  • GoodGenerator
  • Discriminator
  • LayerNorm
  • BatchNorm
  • Gradient of Discriminator
  • Gradient of LayerNorm
  • Gradient of BatchNorm

Result

There are some weird results (cosine < 0 or the distance is bigger than defined threshold - 1 degree) and we look forward to your comments. Here are the outputs of the comparison.

b, c, h, w, in, out: 512, 12, 32, 32, 12, 4

-----------gen_data------------
True
tf.abs.mean: 0.500134
to.abs.mean: 0.500134
diff.mean: 0.0
cosine distance of gen_data: 0.0

-----------depth to space------------
True
tf.abs.mean: 0.500047
to.abs.mean: 0.500047
diff.mean: 0.0 cosine distance of depth to space: 0.0

-----------conv2d------------
True
tf.abs.mean: 2.5888
to.abs.mean: 2.5888
diff.mean: 3.56939e-07
cosine distance of conv2d: 5.96046447754e-08

-----------ConvMeanPool------------
True
tf.abs.mean: 2.58869
to.abs.mean: 2.58869
diff.mean: 2.93676e-07
cosine distance of ConvMeanPool: 0.0

-----------MeanPoolConv------------
True
tf.abs.mean: 2.48026
to.abs.mean: 2.48026
diff.mean: 3.42314e-07
cosine distance of MeanPoolConv: 0.0

-----------UpsampleConv------------
True
tf.abs.mean: 2.64478
to.abs.mean: 2.64478
diff.mean: 5.50668e-07
cosine distance of UpsampleConv: 0.0

-----------ResidualBlock_Up------------
True
tf.abs.mean: 1.01438
to.abs.mean: 1.01438
diff.mean: 5.99736e-07
cosine distance of ResidualBlock_Up: 0.0

-----------ResidualBlock_Down------------
False
tf.abs.mean: 2.38841
to.abs.mean: 2.38782
diff.mean: 0.192403
cosine distance of ResidualBlock_Down: 0.00430130958557

-----------Generator------------
True
tf.abs.mean: 0.183751
to.abs.mean: 0.183751
diff.mean: 9.97704e-07
cosine distance of Generator: 0.0

-----------D_input------------
True
tf.abs.mean: 0.500013
to.abs.mean: 0.500013
diff.mean: 0.0
cosine distance of D_input: 0.0

-----------Discriminator------------
True
tf.abs.mean: 295.795
to.abs.mean: 295.745
diff.mean: 0.0496472
cosine distance of Discriminator: 0.0

-----------GradOfDisc------------
GradOfDisc
tf: 315944.9375
to: 315801.09375
True
tf.abs.mean: 315945.0
to.abs.mean: 315801.0
diff.mean: 143.844
cosine distance of GradOfDisc: 0.0

-----------LayerNorm-Forward------------
True
tf.abs.mean: 0.865959
to.abs.mean: 0.865946
diff.mean: 1.3031e-05
cosine distance of LayerNorm-Forward: -2.38418579102e-07

-----------LayerNorm-Backward------------
False
tf.abs.mean: 8.67237e-10
to.abs.mean: 2.49221e-10
diff.mean: 6.18019e-10
cosine distance of LayerNorm-Backward: 0.000218987464905

-----------BatchNorm------------
True
tf.abs.mean: 0.865698
to.abs.mean: 0.865698
diff.mean: 1.13394e-07
cosine distance of BatchNorm: 0.0

-----------BatchNorm-Backward------------
True
tf.abs.mean: 8.66102e-10
to.abs.mean: 8.62539e-10
diff.mean: 3.56342e-12
cosine distance of BatchNorm-Backward: 4.17232513428e-07

Acknowledge

Owner
Hung Nguyen
Hung Nguyen
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
Objax Apache-2Objax (šŸ„‰19 Ā· ā­ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
Code for our EMNLP 2021 paper ā€œHeterogeneous Graph Neural Networks for Keyphrase Generationā€

GATER This repository contains the code for our EMNLP 2021 paper ā€œHeterogeneous Graph Neural Networks for Keyphrase Generationā€. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work šŸŒŸ Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
šŸ”„RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022