Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition:

Overview

Multi-Type-TD-TSR

Check it out on Open In Colab Source Code of our Paper: Multi-Type-TD-TSR Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition

Description

Multi-Type-TD-TSR the Whole Pipeline

As global trends are shifting towards data-driven industries, the demand for automated algorithms that can convert digital images of scanned documents into machine readable information is rapidly growing. Besides the opportunity of data digitization for the application of data analytic tools, there is also a massive improvement towards automation of processes, which previously would require manual inspection of the documents. Although the introduction of optical character recognition (OCR) technologies mostly solved the task of converting human-readable characters from images into machine-readable characters, the task of extracting table semantics has been less focused on over the years. The recognition of tables consists of two main tasks, namely table detection and table structure recognition. Most prior work on this problem focuseson either task without offering an end-to-end solution or paying attention to real application conditions like rotated images or noise artefacts inside the document image. Recent work shows a clear trend towards deep learning approaches coupled with the use of transfer learning for the task of table structure recognition due to the lack of sufficiently large datasets. In this paper we present a multistage pipeline named Multi-Type-TD-TSR, which offers an end-to-end solution for the problem of table recognition. It utilizes state-of-the-art deep learning models for table detection and differentiates between 3 different types of tables based on the tables’ borders. For the table structure recognition we use a deterministic non-data driven algorithm, which works on all table types. We additionally present two algorithms. One for unbordered tables and one for bordered tables, which are the base of the used table structure recognition algorithm. We evaluate Multi-Type-TD-TSR on the ICDAR 2019 table structure recognition dataset and achieve a new state-of-the-art.

Multi-Type-TD-TSR on Fully Bordered Tables

For TSR on fully bordered tables, we use the erosion and dilation operation to extract the row-column grid cell image without any text or characters. The erosion kernels are generally thin vertical and horizontal strips that are longer than the overall font size but shorter than the size of the smallest grid cell and, in particular, must not be wider than the smallest table border width. Using these kernel size constraints results in the erosion operation removing all fonts and characters from the table while preserving the table borders. In order to restore the original line shape, the algorithm applies the dilation operation using the same kernel size on each of the two eroded images, producing an image with vertical and a second with horizontal lines. Finally, the algorithm combines both images by using a bit-wise ```or``` operation and re-inverting the pixel values to obtain a raster cell image. We then use the contours function on the grid-cell image to extract the bounding-boxes for every single grid cell.

Multi-Type-TD-TSR on Unbordered Tables

The TSR algorithm for unbordered tables works similarly to the one for bordered tables but utilizes the erosion operation in a different way. The erosion kernel is in general a thin strip with the difference that the horizontal size of the horizontal kernel includes the full image width and the vertical size of the vertical kernel the full image height. The algorithm slides both kernels independently over the whole image from left to right for the vertical kernel, and from top to bottom for the horizontal kernel. During this process it is looking for empty rows and columns that do not contain any characters or font. The resulting images are inverted and combined by a bit-wise ```and``` operation producing the final output. The output is a grid-cell image similar to the one from TSR for bordered tables, where the overlapping areas of the two resulting images represent the bounding-boxes for every single grid cell.

Multi-Type-TD-TSR on Partially Bordered Tables

The main goal of our algorithms for bordered and unbordered tables is to create a grid cell image by adding borders in the unbordered case and detecting lines in the bordered case. If a table is only partially bordered, then the unbordered algorithm is prevented to add borders in orthogonal direction to the existing borders, while the bordered algorithm can only find the existing borders. Both approaches result in incomplete grid cell images.


TSR for partially bordered tables uses the same erosion algorithm as in bordered tables to detect existing borderes, but without using them to create a grid cell, but to delete the borders from the table image to get an unbordered table. This allows for applying the algorithm for unbordered tables to create the grid-cell image and contours by analogy to the variants discussed above. A key feature of this approach is that it works with both bordered and unbordered tables: it is type-independent.

 

 

 

 

 

Table Structure Recognition Results

ICDAR 19 (Track B2)

IoU IoU IoU IoU Weighted
Team 0.6 0.7 0.8 0.9 Average
CascadeTabNet 0.438 0.354 0.19 0.036 0.232
NLPR-PAL 0.365 0.305 0.195 0.035 0.206
Multi-Type-TD-TSR 0.589 0.404 0.137 0.015 0.253

Instructions

Configurations

The source code is developed under the following library dependencies

  • PyTorch = 1.7.0
  • Torchvision = 0.8.1
  • Cuda = 10.1
  • PyYAML = 5.1

Detectron 2

The table detection model is based on detectron2 follow this installation guide to setup.

Image Alignment Pre-Processing

For the image alignment pre-processing step there is one script available:

  • deskew.py

To apply the image alignment pre-processing algorithm to all images in one folder, you need to execute:

python3 deskew.py

with the following parameters

  • --folder the input folder including document images
  • --output the output folder for the deskewed images

Table Structure Recognition (TSR)

For the table structure recognition we offer a simple script for different approaches

  • tsr.py

To apply a table structure recognition algorithm to all images in one folder, you need to execute:

python3 tsr.py

with the following parameters

  • --folder path of the input folder including table images
  • --type the table structure recognition type type in ["borderd", "unbordered", "partially", "partially_color_inv"]
  • --img_output output folder path for the processed images
  • --xml_output output folder path for the xml files including bounding boxes

Table Detection and Table Structure Recognition (TD & TSR)

To appy the table detection with a followed table structure recogniton

  • tdtsr.py

To apply a table structure recognitio algorithm to all images in one folder, you need to execute:

python3 tdtsr.py

with the following parameters

  • --folder path of the input folder including table images
  • --type the table structure recognition type type in ["borderd", "unbordered", "partially", "partially_color_inv"]
  • --tsr_img_output output folder path for the processed table images
  • --td_img_output output folder path for the produced table cutouts
  • --xml_output output folder path for the xml files for tables and cells including bounding boxes
  • --config path of detectron2 configuration file for table detection
  • --yaml path of detectron2 yaml file for table detection
  • --weights path of detectron2 model weights for table detection

Evaluation

To evaluate the table structure recognition algorithm we provide the following script:

  • evaluate.py

to apply the evaluation the table images and their labels in xml-format have to be the same name and should lie in a single folder. The evaluation could be started by:

python3 evaluate.py

with the following parameter

  • --dataset dataset folder path containing table images and labels in .xml format

Get Data

  • test dataset for table structure recognition including table images and annotations can be downloaded here
  • table detection detectron2 model weights and configuration files can be downloaded here

Citation

@misc{fischer2021multitypetdtsr,
    title={Multi-Type-TD-TSR - Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition: from OCR to Structured Table Representations},
    author={Pascal Fischer and Alen Smajic and Alexander Mehler and Giuseppe Abrami},
    year={2021},
    eprint={2105.11021},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
Pascal Fischer
love machine learning, algorithms, probabilistic approaches, computer vision, natural language processing, robotics, 3D graphics and simulations.
Pascal Fischer
基于Paddle框架的PSENet复现

PSENet-Paddle 基于Paddle框架的PSENet复现 本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 AIStudio链接 参考项目: whai362-PSENet 环境配置 本项目

QuanHao Guo 4 Apr 24, 2022
make a better chinese character recognition OCR than tesseract

deep ocr See README_en.md for English installation documentation. 只在ubuntu下面测试通过,需要virtualenv安装,安装路径可自行调整: git clone https://github.com/JinpengLI/deep

Jinpeng 1.5k Dec 28, 2022
A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

1 Dec 22, 2021
Fast style transfer

faststyle Faststyle aims to provide an easy and modular interface to Image to Image problems based on feature loss. Install Making sure you have a wor

Lucas Vazquez 21 Mar 11, 2022
Text recognition (optical character recognition) with deep learning methods.

What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis | paper | training and evaluation data | failure cases and cle

Clova AI Research 3.2k Jan 04, 2023
Scan the MRZ code of a passport and extract the firstname, lastname, passport number, nationality, date of birth, expiration date and personal numer.

PassportScanner Works with 2 and 3 line identity documents. What is this With PassportScanner you can use your camera to scan the MRZ code of a passpo

Edwin Vermeer 441 Dec 24, 2022
A version of nrsc5-gui that merges the interface developed by cmnybo with the architecture developed by zefie in order to start a new baseline that is not heavily dependent upon Python processing.

NRSC5-DUI is a graphical interface for nrsc5. It makes it easy to play your favorite FM HD radio stations using an RTL-SDR dongle. It will also displa

61 Dec 22, 2022
Basic functions manipulating images using the OpenCV library

OpenCV Basic functions manipulating images using the OpenCV library. Reading Ima

Shatha Siala 3 Feb 17, 2022
Make OpenCV camera loops less of a chore by skipping the boilerplate and getting right to the interesting stuff

camloop Forget the boilerplate from OpenCV camera loops and get to coding the interesting stuff Table of Contents Usage Install Quickstart More advanc

Gabriel Lefundes 9 Nov 12, 2021
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Tools for manipulating and evaluating the hOCR format for representing multi-lingual OCR results by embedding them into HTML.

hocr-tools About About the code Installation System-wide with pip System-wide from source virtualenv Available Programs hocr-check -- check the hOCR f

OCRopus 285 Dec 08, 2022
DouZero is a reinforcement learning framework for DouDizhu - 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

Kwai 3.1k Jan 05, 2023
Markup for note taking

Subtext: markup for note-taking Subtext is a text-based, block-oriented hypertext format. It is designed with note-taking in mind. It has a simple, pe

Gordon Brander 224 Jan 01, 2023
A simple component to display annotated text in Streamlit apps.

Annotated Text Component for Streamlit A simple component to display annotated text in Streamlit apps. For example: Installation First install Streaml

Thiago Teixeira 312 Dec 30, 2022
pulse2percept: A Python-based simulation framework for bionic vision

pulse2percept: A Python-based simulation framework for bionic vision Retinal degenerative diseases such as retinitis pigmentosa and macular degenerati

67 Dec 29, 2022
This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and flexible design and ready to be integrated right into your system!

Passport-Recogniton-System This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and fle

Mo'men Ashraf Muhamed 7 Jan 04, 2023
Erosion and dialation using structure element in OpenCV python

Erosion and dialation using structure element in OpenCV python

Tamzid hasan 2 Nov 11, 2021
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
A list of hyperspectral image super-solution resources collected by Junjun Jiang

A list of hyperspectral image super-resolution resources collected by Junjun Jiang. If you find that important resources are not included, please feel free to contact me.

Junjun Jiang 301 Jan 05, 2023