Make OpenCV camera loops less of a chore by skipping the boilerplate and getting right to the interesting stuff

Overview

License


camloop

Forget the boilerplate from OpenCV camera loops and get to coding the interesting stuff

Table of Contents

Usage

This is a simple project developed to reduce complexity and time writing boilerplate code when prototyping computer vision applications. Stop worrying about opening/closing video caps, handling key presses, etc, and just focus on doing the cool stuff!

The project was developed in Python 3.8 and tested with physical local webcams. If you end up using it in any other context, please consider letting me know if it worked or not for whatever use case you had :)

Install

The project is distributed by pypi, so just:

$ pip install pycamloop

As usual, conda or venv are recommended to manage your local environments.

Quickstart

To run a webcam loop and process each frame, just define a function that takes as argument the frame as obtained from cv2.VideoCapture's cap() method (i.e: a np.array) and wrap it with the @camloop decorator. You just need to make sure your function takes the frame as an argument, and returns it so the loop can show it:

from camloop import camloop

@camloop()
def grayscale_example(frame):
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    return frame

# calling the function will start the loop and show the results with the cv2.imshow method
grayscale_example()

The window can be exited at any time by pressing "q" on the keyboard. You can also take screenshots at any time by pressing the "s" key. By default they will be saved in the current directory (see configuring the loop for information on how to customize this and other options).

More advanced use cases

Now, let's say that instead of just converting the frame to grayscale and visualizing it, you want to pass some other arguments, perform more complex operations, and/or persist information every loop. All of this can be done inside the function wrapped by the camloop decorator, and external dependencies can be passed as arguments to your function. For example, let's say we want to run a face detector and save the results to a file called "face-detection-results.txt":

from camloop import camloop

# for simplicity, we use cv2's own haar face detector
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")

@camloop()
def face_detection_example(frame, face_cascade, results_fp=None):
    grayscale_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(grayscale_frame, 1.2, 5)
    for bbox in faces:
        x1, y1 = bbox[:2]
        x2 = x1 + bbox[2]
        y2 = y1 + bbox[3]
        cv2.rectangle(frame, (x1, y1), (x2, y2), (180, 0, 180), 5)

    if results_fp is not None:
	    with open(results_fp, 'a+') as f:
	        f.write(f"{datetime.datetime.now().isoformat()} - {len(faces)} face(s) found: {faces}\n")
    return frame

face_detection_example(face_cascade, results_fp="face-detection-results.txt")

Camloop can handle any arguments and keyword arguments you define in your function, as long as the frame is the first one. In calling the wrapped function, pass the extra arguments with the exception of the frame which is handled implicitly.

Configuring the loop

Since most of the boilerplate is now hidden, camloop exposes a configuration object that allows the user to modify several aspects of it's behavior. The options are:

parameter type default description
source int 0 Index of the camera to use as source for the loop (passed to cv2.VideoCapture())
mirror bool False Whether to flip the frames horizontally
resolution tuple[int, int] None Desired resolution (H,W) of the frames. Passed to the cv2.VideoCapture.set method. Default values and acceptance of custom ones depend on the webcam.
output string '.' Directory where to save artifacts by default (ex: captured screenshots)
sequence_format string None Format for rendering sequence of frames. Acceptable formats are "gif" or "mp4". If specified a video/gif will be saved to the output folder
fps float None FPS value used for the rendering of the sequence of frames. If unspecified, the program will try to estimate if from the length of the recording and number of frames
exit_key string 'q' Keyboard key used to exit the loop
screenshot_key string 's' Keyboard key used to capture a screenshot

If you want to use something other than the defaults, define a dictionary object with the desired configuration and pass it to the camloop decorator.

For example, here we want to mirror the frames horizontally, and save an MP4 video of the recording at 23.7 FPS to the test directory:

from camloop import camloop

config = {
    'mirror': True,
    'output': "test/",
    'fps': 23.7,
    'sequence_format': "mp4",
}

@camloop(config)
def grayscale_example(frame):
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    return frame

grayscale_example()

Demo

Included in the repo is a demonstration script that can be run out-of-the-box to verify camloop and see it's main functionalities. There are a few different samples you can check out, including the grayscale and face detection examples seen in this README).

To run the demo, install camloop and clone the repo:

$ pip install pycamloop
$ git clone https://github.com/glefundes/pycamloop.git
$ cd pycamloop/

Then run it by specifying which demo you want and passing any of the optional arguments (python3 demo.py -h for more info on them). In this case, we're mirroring the frames from the "face detection" demo and saving the a video of the recording in the "demo-videos" directory:

$ mkdir demo-videos
$ python3 demo.py face-detection --mirror --save-sequence mp4 -o demo-videos/

About The Project

I work as a computer vision engineer and often find myself having to prototype or debug projects locally using my own webcam as a source. This, of course, means I have to frequently code the same boilerplate OpenCV camera loop in multiple places. Eventually I got tired of copy-pasting the same 20 lines from file to file and decided to write a 100-ish lines package to make my work a little more efficient, less boring and code overall less bloated. That's pretty much it. Also, it was a nice chance to practice playing with decorators.

TODO

  • Verify functionality with other types of video sources (video files, streams, etc)

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Gabriel Lefundes Vieira - [email protected]

Owner
Gabriel Lefundes
Data Scientist, Computer Vision Engineer @ Amigo Edu.
Gabriel Lefundes
Deskew is a command line tool for deskewing scanned text documents. It uses Hough transform to detect "text lines" in the image. As an output, you get an image rotated so that the lines are horizontal.

Deskew by Marek Mauder https://galfar.vevb.net/deskew https://github.com/galfar/deskew v1.30 2019-06-07 Overview Deskew is a command line tool for des

Marek Mauder 127 Dec 03, 2022
TextBoxes re-implement using tensorflow

TextBoxes-TensorFlow TextBoxes re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modified ba

Gu Xiaodong 44 Dec 29, 2022
Vietnamese Language Detection and Recognition

Table of Content Introduction (Khôi viết) Dataset (đổi link thui thành 3k5 ảnh mình) Getting Started (An Viết) Requirements Usage Example Training & E

6 May 27, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
Text Detection from images using OpenCV

EAST Detector for Text Detection OpenCV’s EAST(Efficient and Accurate Scene Text Detection ) text detector is a deep learning model, based on a novel

Abhishek Singh 88 Oct 20, 2022
An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Oriented Scene Text Detection

InceptText-Tensorflow An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Orien

GeorgeJoe 115 Dec 12, 2022
Links to awesome OCR projects

Awesome OCR This list contains links to great software tools and libraries and literature related to Optical Character Recognition (OCR). Contribution

Konstantin Baierer 2.2k Jan 02, 2023
Python Computer Vision application that allows users to draw/erase on the screen using their webcam.

CV-Virtual-WhiteBoard The Virtual WhiteBoard is a project I made using the OpenCV and Mediapipe Python libraries. Using your index and middle finger y

Stephen Wang 1 Jan 07, 2022
Steve Tu 71 Dec 30, 2022
Handwritten_Text_Recognition

Deep Learning framework for Line-level Handwritten Text Recognition Short presentation of our project Introduction Installation 2.a Install conda envi

24 Jul 15, 2022
Natural language detection

Detect the language of text. What’s so cool about franc? franc can support more languages(†) than any other library franc is packaged with support for

Titus 3.8k Jan 02, 2023
Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Total-Text-Dataset (Official site) Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.) Update

Chee Seng Chan 671 Dec 27, 2022
Driver Drowsiness Detection with OpenCV & Dlib

In this project, we have built a driver drowsiness detection system that will detect if the eyes of the driver are close for too long and infer if the driver is sleepy or inactive.

Mansi Mishra 4 Oct 26, 2022
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
Binarize document images

Binarization Binarization for document images Examples Introduction This tool performs document image binarization (i.e. transform colour/grayscale to

QURATOR-SPK 48 Jan 02, 2023
Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels"

Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels" Please refer to htt

Ke Sun 1 Feb 14, 2022
📷 Face Recognition using Haar-Cascade Classifier, OpenCV, and Python

Face-Recognition-System Face Recognition using Haar-Cascade Classifier, OpenCV and Python. This project is based on face detection and face recognitio

1 Jan 10, 2022
Pure Javascript OCR for more than 100 Languages 📖🎉🖥

Version 2 is now available and under development in the master branch, read a story about v2: Why I refactor tesseract.js v2? Check the support/1.x br

Project Naptha 29.2k Jan 05, 2023
Zoom , GoogleMeets에서 Vtuber 데뷔하기

EasyVtuber Facial landmark와 GAN을 이용한 Character Face Generation Google Meets, Zoom 등에서 자신만의 웹툰, 만화 캐릭터로 대화해보세요! 악세사리는 어느정도 추가해도 잘 작동해요! 안타깝게도 RTX 2070

Gunwoo Han 140 Dec 23, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 06, 2023