A list of hyperspectral image super-solution resources collected by Junjun Jiang

Overview

Hyperspectral-Image-Super-Resolution-Benchmark

A list of hyperspectral image super-resolution resources collected by Junjun Jiang. If you find that important resources are not included, please feel free to contact me.

According to whether or not to use auxiliary information (PAN image/RGB image/multispectral images), hyperspectral image super-resolution techniques can be divided into two classes: hyperspectral image super-resolution (fusion) and single hyperspectral image super-resolution. The former could be roughly categorized as follows: 1) Bayesian based approaches, 2) Tensor based approaches, 3) Matrix factorization based approaches, and 4) Deep Learning based approaches.

================================================================================

Pioneer Work and Technique Review

  • Unmixing based multisensor multiresolution image fusion, TGRS1999, B. Zhukov et al.

  • Application of the stochastic mixing model to hyperspectral resolution enhancement, TGRS2004, M. T. Eismann et al.

  • Resolution enhancement of hyperspectral imagery using maximum a posteriori estimation with a stochastic mixing model, Ph.D. dissertation, 2004, M. T. Eismann et al.

  • MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor, TIP2004, R. C. Hardie et al.

  • Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions, TGRS2005, M. T. Eismann et al.

  • Hyperspectral pansharpening: a review. GRSM2015, L. Loncan et al. [PDF] [Code]

  • Hyperspectral and multispectral data fusion: A comparative review of the recent literature, GRSM2017, N. Yokoya,et al. [PDF] [Code]

================================================================================

Hyperspectral Image Super-Resolution (Fusion)

1) Bayesian based approaches
  • Blind Image Fusion for Hyperspectral Imaging with the Directional Total Variation, Inverse Problems, 2018, Leon Bungert et al. [PDF] [Code]

  • Bayesian sparse representation for hyperspectral image super resolution, CVPR2015, N. Akhtar et al. [PDF] [Code]

  • Hysure: A convex formulation for hyperspectral image superresolution via subspace-based regularization, TGRS2015, M. Simoes et al. [PDF] [Code]

  • Hyperspectral and multispectral image fusion based on a sparse representation, TGRS2015, Q. Wei et al. [PDF] [Code]

  • Bayesian fusion of multi-band images, Jstar2015, W. Qi et al. [PDF] [Code]

  • Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images, TGRS2009, Y. Zhang et al. [PDF]

  • Weighted Low-rank Tensor Recovery for Hyperspectral Image Restoration, arXiv2018, Yi Chang et al. [PDF]

2) Tensor based approaches
  • Hyperspectral image superresolution via non-local sparse tensor factorization, CVPR2017, R. Dian et al. [PDF]

  • Spatial–Spectral-Graph-Regularized Low-Rank Tensor Decomposition for Multispectral and Hyperspectral Image Fusion, Jstars2018, K. Zhang et al. [PDF]

  • Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor Factorization, TIP2108, S. Li et al. [PDF] [Code]

  • Hyperspectral Super-Resolution: A Coupled Tensor Factorization Approach, arXiv2018, Charilaos I. Kanatsoulis et al. [PDF]

  • Nonlocal Patch Tensor Sparse Representation for Hyperspectral Image Super-Resolution, TIP2019, Yang Xu et al. [PDF] [Web]

  • Learning a Low Tensor-Train Rank Representation for Hyperspectral Image Super-Resolution, TNNLS2019, Renwei Dian et al. [PDF] [Web]

  • Nonnegative and Nonlocal Sparse Tensor Factorization-Based Hyperspectral Image Super-Resolution, IEEE TGRS2020, Wei Wan et al. [PDF]

  • Nonlocal Coupled Tensor CP Decomposition for Hyperspectral and Multispectral Image Fusion, IEEE TGRS2020, Xu Yang et al. [PDF]

  • Hyperspectral Super-Resolution via Coupled Tensor Ring Factorization, IEEE TGRS2020, Wei He et al. [PDF]

  • Spatial-Spectral Structured Sparse Low-Rank Representation for Hyperspectral Image Super-Resolution, IEEE TIP2021, Jize Xue et al., [PDF]

3) Matrix factorization based approaches
  • High-resolution hyperspectral imaging via matrix factorization, CVPR2011, R. Kawakami et al. [PDF] [Code]

  • Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion, TGRS2012, N. Yokoya et al. [PDF] [Code]

  • Sparse spatio-spectral representation for hyperspectral image super-resolution, ECCV2014, N. Akhtar et al. [PDF] [Code]

  • Hyper-sharpening: A first approach on SIM-GA data, Jstars2015, M. Selva et al.

  • Hyperspectral super-resolution by coupled spectral unmixing, ICCV2015, C Lanaras. [PDF] [Code]

  • RGB-guided hyperspectral image upsampling, CVPR2015, H. Kwon et al. [PDF] [Code]

  • Multiband image fusion based on spectral unmixing, TGRS2016, Q. Wei et al. [PDF] [Code]

  • Hyperspectral image super-resolution via non-negative structured sparse representation, TIP2016, W. Dong, et al. [PDF] [Code]

  • Hyperspectral super-resolution of locally low rank images from complementary multisource data, TIP2016, M. A. Veganzones et al. [PDF]

  • Multispectral and hyperspectral image fusion based on group spectral embedding and low-rank factorization, TGRS2017, K. Zhang et al.

  • Hyperspectral Image Super-Resolution Based on Spatial and Spectral Correlation Fusion, TRGS2018, C. Yi et al.

  • Self-Similarity Constrained Sparse Representation for Hyperspectral Image Super-Resolution, TIP2108, X. Han et al.

  • Exploiting Clustering Manifold Structure for Hyperspectral Imagery Super-Resolution, TIP2018, L. Zhang et al. [Code]

  • Hyperspectral Image Super-Resolution With a Mosaic RGB Image, TIP2018, Y. Fu et al. [PDF]

  • Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor Factorization, TIP2018, S. Li et al. [PDF][Code]

  • Multispectral Image Super-Resolution via RGB Image Fusion and Radiometric Calibration, TIP2019, Zhi-Wei Pan et al. [PDF] [Web]

  • Hyperspectral Image Super-resolution via Subspace-Based Low Tensor Multi-Rank Regularization, TIP2019, Renwei Dian et al. [PDF]

  • Hyperspectral Image Super-Resolution With Optimized RGB Guidance, Ying Fu et al., CVPR2019. [PDF]

  • Super-Resolution for Hyperspectral and Multispectral Image Fusion Accounting for Seasonal Spectral Variability, TIP2020, R.A. Borsoi et al. [PDF]

  • A Truncated Matrix Decomposition for Hyperspectral Image Super-Resolution, TIP2020, Jianjun Liu et al. [PDF]

4) Deep Learning based approaches
  • Deep Residual Convolutional Neural Network for Hyperspectral Image Super-Resolution, ICIG2017, C. Wang et al. [PDF]

  • SSF-CNN: Spatial and Spectral Fusion with CNN for Hyperspectral Image Super-Resolution, ICIP2018, X. Han et al. [PDF]

  • Deep Hyperspectral Image Sharpening, TNNLS2018, R. Dian et al. [PDF] [Code]

  • HSI-DeNet: Hyperspectral Image Restoration via Convolutional Neural Network, TGRS2018, Y. Chang et al. [Web]

  • Unsupervised Sparse Dirichlet-Net for Hyperspectral Image Super-Resolution, CVPR2018, Y. Qu et al. [PDF] [Code]

  • Deep Hyperspectral Prior: Denoising, Inpainting, Super-Resolution, arXiv2019, Oleksii Sidorov et al. [PDF] [Code]

  • Multi-level and Multi-scale Spatial and Spectral Fusion CNN for Hyperspectral Image Super-resolution, ICCVW 2019, Xianhua Han et al. [PDF]

  • Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net, CVPR2019, Xie Qi et al. [PDF] [Web]

  • Hyperspectral Image Reconstruction Using Deep External and Internal Learning,ICCV2019, Zhang Tao et al. [PDF] [Web]

  • Deep Blind Hyperspectral Image Super-Resolution, IEEE TNNLS 2020, Lei Zhang et al. [Pdf]

  • Deep Recursive Network for Hyperspectral Image Super-Resolution, IEEE TCI2020, Wei Wei, et al. [PDF][Web]

  • Unsupervised Recurrent Hyperspectral Imagery Super-Resolution Using Pixel-Aware Refinement, IEEE TGRS2021, Wei Wei, et al. [PDF][Web]

  • A Band Divide-and-Conquer Multispectral and Hyperspectral Image Fusion Method, IEEE TGRS 2021, Weiwei Sun et al. [Pdf]

  • Hyperspectral Image Super-Resolution via Deep Progressive Zero-Centric Residual Learning, IEEE TIP 2021, Zhiyu Zhu et al. [Pdf]

5) Simulations registration and super-resolution approaches
  • An Integrated Approach to Registration and Fusion of Hyperspectral and Multispectral Images, TRGS 2019, Yuan Zhou et al.

  • Deep Blind Hyperspectral Image Fusion, ICCV2019, Wu Wang et al. [PDF]

================================================================================

Single Hyperspectral Image Super-Resolution

  • Super-resolution reconstruction of hyperspectral images, TIP2005, T. Akgun et al.

  • Enhanced self-training superresolution mapping technique for hyperspectral imagery, GRSL2011, F. A. Mianji et al.

  • A super-resolution reconstruction algorithm for hyperspectral images. Signal Process. 2012, H. Zhang et al.

  • Super-resolution hyperspectral imaging with unknown blurring by low-rank and group-sparse modeling, ICIP2014, H. Huang et al.

  • Super-resolution mapping via multi-dictionary based sparse representation, ICASSP2016, H. Huang et al.

  • Super-resolution: An efficient method to improve spatial resolution of hyperspectral images, IGARSS2016, A. Villa, J. Chanussot et al.

  • Hyperspectral image super resolution reconstruction with a joint spectral-spatial sub-pixel mapping model, IGARSS2016, X. Xu et al.

  • Hyperspectral image super-resolution by spectral mixture analysis and spatial–spectral group sparsity, GRSL2016, J. Li et al.

  • Super-resolution reconstruction of hyperspectral images via low rank tensor modeling and total variation regularization, IGARSS2016, S. He et al. [PDF]

  • Hyperspectral image super-resolution by spectral difference learning and spatial error correction, GRSL2017, J. Hu et al.

  • Super-Resolution for Remote Sensing Images via Local–Global Combined Network, GRSL2017, J. Hu et al.

  • Hyperspectral image superresolution by transfer learning, Jstars2017, Y. Yuan et al. [PDF]

  • Hyperspectral image super-resolution using deep convolutional neural network, Neurocomputing, 2017, Sen Lei et al. [PDF]

  • Hyperspectral image super-resolution via nonlocal low-rank tensor approximation and total variation regularization, Remote Sensing, 2017, Yao Wang et al. [PDF]

  • Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network, Remote Sensing, 2017, Saohui Mei et al. [PDF] [Code]

  • A MAP-Based Approach for Hyperspectral Imagery Super-Resolution, TIP2018, Hasan Irmak et al.

  • Single Hyperspectral Image Super-resolution with Grouped Deep Recursive Residual Network, BigMM2018, Yong Li et al. [PDF] [Code]

  • Hyperspectral image super-resolution with spectral–spatial network, IJRS2018, Jinrang Jia et al. [PDF]

  • Separable-spectral convolution and inception network for hyperspectral image super-resolution, IJMLC 2019, Ke Zheng et al.

  • Hyperspectral Image Super-Resolution Using Deep Feature Matrix Factorization, IEEE TGRS 2019, Weiying Xie et al. [PDF]

  • Deep Hyperspectral Prior Single-Image Denoising, Inpainting, Super-Resolution, ICCVW2019, Oleksii Sidorov et al. [PDF]

  • Spatial-Spectral Residual Network for Hyperspectral Image Super-Resolution, arXiv2020, Qi Wang et al. [PDF]

  • CNN-Based Super-Resolution of Hyperspectral Images, IEEE TGRS 2020, P. V. Arun et al. [PDF]

  • Hyperspectral Image Super-Resolution via Intrafusion Network, IEEE TGRS 2020, Jing Hu et al. [PDF]

  • Mixed 2D/3D Convolutional Network for Hyperspectral Image Super-Resolution, Remote Sensing 2020, Qiang Li et al. [Code][Pdf]

  • Hyperspectral Image Super-Resolution by Band Attention Through Adversarial Learning, IEEE TGRS 2020, Jiaojiao Li et al. [Pdf]

  • Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral Imagery, IEEE TCI 2020, Junjun Jiang et al. [Code][Pdf] 【This is our method and achieves state-of-the-art performance for Single Hyperspectral Image Super-Resolution】

  • Bidirectional 3D Quasi-Recurrent Neural Networkfor Hyperspectral Image Super-Resolution, IEEE JStars 2021, Ying Fu et al. [Web][Pdf]

  • Hyperspectral Image Super-Resolution Using Spectrum and Feature Context, IEEE TIM 2021, Qi Wang et al. [Web][Pdf]

  • Hyperspectral Image Super-Resolution with Spectral Mixup and Heterogeneous Datasets, arXiv2021, Ke Li et al. [Pdf]

  • A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution, IEEE TGRS 2021, Denghong Liu et al. [Web][Pdf]

  • Spatial-Spectral Feedback Network for Super-Resolution of Hyperspectral Imagery, arXiv 2021, Enhai Liu et al. [Web][Pdf]

  • Exploring the Relationship Between 2D/3D Convolution for Hyperspectral Image Super-Resolution, IEEE TGRS 2021, Qi Wang et al. [Web][Pdf]

================================================================================

Databases

================================================================================

Image Quality Measurement

  • Peak Signal to Noise Ratio (PSNR)
  • Root Mean Square Error (RMSE)
  • Structural SIMilarity index (SSIM)
  • Spectral Angle Mapper (SAM)
  • Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS)
  • Universal Image Quality Index (UIQI)
Owner
Junjun Jiang
He is a Professor at HIT, Harbin, China.
Junjun Jiang
OpenGait is a flexible and extensible gait recognition project

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
PSENet - Shape Robust Text Detection with Progressive Scale Expansion Network.

News Python3 implementations of PSENet [1], PAN [2] and PAN++ [3] are released at https://github.com/whai362/pan_pp.pytorch. [1] W. Wang, E. Xie, X. L

1.1k Dec 24, 2022
huoyijie 1.2k Dec 29, 2022
Text Detection from images using OpenCV

EAST Detector for Text Detection OpenCV’s EAST(Efficient and Accurate Scene Text Detection ) text detector is a deep learning model, based on a novel

Abhishek Singh 88 Oct 20, 2022
Code for CVPR 2022 paper "SoftGroup for Instance Segmentation on 3D Point Clouds"

SoftGroup We provide code for reproducing results of the paper SoftGroup for 3D Instance Segmentation on Point Clouds (CVPR 2022) Author: Thang Vu, Ko

Thang Vu 231 Dec 27, 2022
A dataset handling library for computer vision datasets in LOST-fromat

A dataset handling library for computer vision datasets in LOST-fromat

8 Dec 15, 2022
Python rubik's cube solver

This program makes a 3D representation of a rubiks cube and solves it step by step.

Pablo QB 4 May 29, 2022
Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Handwritten Text Recognition with TensorFlow Update 2021: more robust model, faster dataloader, word beam search decoder also available for Windows Up

Harald Scheidl 1.5k Jan 07, 2023
Face Detection with DLIB

Face Detection with DLIB In this project, we have detected our face with dlib and opencv libraries. Setup This Project Install DLIB & OpenCV You can i

Can 2 Jan 16, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
Perspective recovery of text using transformed ellipses

unproject_text Perspective recovery of text using transformed ellipses. See full writeup at https://mzucker.github.io/2016/10/11/unprojecting-text-wit

Matt Zucker 111 Nov 13, 2022
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
🔎 Like Chardet. 🚀 Package for encoding & language detection. Charset detection.

Charset Detection, for Everyone 👋 The Real First Universal Charset Detector A library that helps you read text from an unknown charset encoding. Moti

TAHRI Ahmed R. 332 Dec 31, 2022
OCR software for recognition of handwritten text

Handwriting OCR The project tries to create software for recognition of a handwritten text from photos (also for Czech language). It uses computer vis

Břetislav Hájek 562 Jan 03, 2023
RRD: Rotation-Sensitive Regression for Oriented Scene Text Detection

RRD: Rotation-Sensitive Regression for Oriented Scene Text Detection For more details, please refer to our paper. Citing Please cite the related works

Minghui Liao 102 Jun 29, 2022
Deep learning based page layout analysis

Deep Learning Based Page Layout Analyze This is a Python implementaion of page layout analyze tool. The goal of page layout analyze is to segment page

186 Dec 29, 2022
Geometric Augmentation for Text Image

Text Image Augmentation A general geometric augmentation tool for text images in the CVPR 2020 paper "Learn to Augment: Joint Data Augmentation and Ne

Canjie Luo 440 Jan 05, 2023
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention

87 Dec 26, 2022
👄 The most accurate natural language detection library for Java and the JVM, suitable for long and short text alike

Quick Info this library tries to solve language detection of very short words and phrases, even shorter than tweets makes use of both statistical and

Peter M. Stahl 532 Dec 28, 2022
WACV 2022 Paper - Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching

Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching Code based on our WACV 2022 Accepted Paper: https://arxiv.org/pdf/

Andres 13 Dec 17, 2022