Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Overview

Handwritten Text Recognition with TensorFlow

  • Update 2021: more robust model, faster dataloader, word beam search decoder also available for Windows
  • Update 2020: code is compatible with TF2

Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words as shown in the illustration below. 3/4 of the words from the validation-set are correctly recognized, and the character error rate is around 10%.

htr

Run demo

Download the model trained on the IAM dataset. Put the contents of the downloaded file model.zip into the model directory of the repository. Afterwards, go to the src directory and run python main.py. The input image and the expected output is shown below.

test

> python main.py
Init with stored values from ../model/snapshot-39
Recognized: "Hello"
Probability: 0.42098119854927063

Command line arguments

  • --train: train the NN on 95% of the dataset samples and validate on the remaining 5%
  • --validate: validate the trained NN
  • --decoder: select from CTC decoders "bestpath", "beamsearch", and "wordbeamsearch". Defaults to "bestpath". For option "wordbeamsearch" see details below
  • --batch_size: batch size
  • --data_dir: directory containing IAM dataset (with subdirectories img and gt)
  • --fast: use LMDB to load images (faster than loading image files from disk)
  • --dump: dumps the output of the NN to CSV file(s) saved in the dump folder. Can be used as input for the CTCDecoder

If neither --train nor --validate is specified, the NN infers the text from the test image (data/test.png).

Integrate word beam search decoding

The word beam search decoder can be used instead of the two decoders shipped with TF. Words are constrained to those contained in a dictionary, but arbitrary non-word character strings (numbers, punctuation marks) can still be recognized. The following illustration shows a sample for which word beam search is able to recognize the correct text, while the other decoders fail.

decoder_comparison

Follow these instructions to integrate word beam search decoding:

  1. Clone repository CTCWordBeamSearch
  2. Compile and install by running pip install . at the root level of the CTCWordBeamSearch repository
  3. Specify the command line option --decoder wordbeamsearch when executing main.py to actually use the decoder

The dictionary is automatically created in training and validation mode by using all words contained in the IAM dataset (i.e. also including words from validation set) and is saved into the file data/corpus.txt. Further, the manually created list of word-characters can be found in the file model/wordCharList.txt. Beam width is set to 50 to conform with the beam width of vanilla beam search decoding.

Train model with IAM dataset

Follow these instructions to get the IAM dataset:

  • Register for free at this website
  • Download words/words.tgz
  • Download ascii/words.txt
  • Create a directory for the dataset on your disk, and create two subdirectories: img and gt
  • Put words.txt into the gt directory
  • Put the content (directories a01, a02, ...) of words.tgz into the img directory

Start the training

  • Delete files from model directory if you want to train from scratch
  • Go to the src directory and execute python main.py --train --data_dir path/to/IAM
  • Training stops after a fixed number of epochs without improvement

Fast image loading

Loading and decoding the png image files from the disk is the bottleneck even when using only a small GPU. The database LMDB is used to speed up image loading:

  • Go to the src directory and run createLMDB.py --data_dir path/to/IAM with the IAM data directory specified
  • A subfolder lmdb is created in the IAM data directory containing the LMDB files
  • When training the model, add the command line option --fast

The dataset should be located on an SSD drive. Using the --fast option and a GTX 1050 Ti training takes around 3h with a batch size of 500.

Information about model

The model is a stripped-down version of the HTR system I implemented for my thesis. What remains is what I think is the bare minimum to recognize text with an acceptable accuracy. It consists of 5 CNN layers, 2 RNN (LSTM) layers and the CTC loss and decoding layer. The illustration below gives an overview of the NN (green: operations, pink: data flowing through NN) and here follows a short description:

  • The input image is a gray-value image and has a size of 128x32
  • 5 CNN layers map the input image to a feature sequence of size 32x256
  • 2 LSTM layers with 256 units propagate information through the sequence and map the sequence to a matrix of size 32x80. Each matrix-element represents a score for one of the 80 characters at one of the 32 time-steps
  • The CTC layer either calculates the loss value given the matrix and the ground-truth text (when training), or it decodes the matrix to the final text with best path decoding or beam search decoding (when inferring)

nn_overview

References

Owner
Harald Scheidl
Interested in computer vision, deep learning, C++ and Python.
Harald Scheidl
Erosion and dialation using structure element in OpenCV python

Erosion and dialation using structure element in OpenCV python

Tamzid hasan 2 Nov 11, 2021
The CIS OCR PostCorrectionTool

The CIS OCR Post Correction Tool PoCoTo Source code for the Java-based PoCoTo client enabling fast interactive batch corrections of complete OCR error

CIS OCR Group 36 Dec 15, 2022
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023
A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV.

DcoumentScanner A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV. Directly install the .exe file to inst

Harsh Vardhan Singh 1 Oct 29, 2021
Code for the AAAI 2018 publication "SEE: Towards Semi-Supervised End-to-End Scene Text Recognition"

SEE: Towards Semi-Supervised End-to-End Scene Text Recognition Code for the AAAI 2018 publication "SEE: Towards Semi-Supervised End-to-End Scene Text

Christian Bartz 572 Jan 05, 2023
OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Alan Tang 354 Dec 12, 2022
ERQA - Edge Restoration Quality Assessment

ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR, deblurring, denoising, etc) are restoring real details.

MSU Video Group 27 Dec 17, 2022
Um RPG de texto orientado a objetos.

RPG de texto Um RPG de texto orientado a objetos, sem história. Um RPG (Role-playing game) baseado em texto em que você pode viajar para alguns locais

Vinicius 3 Oct 05, 2022
Unofficial implementation of "TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from Scanned Document Images"

TableNet Unofficial implementation of ICDAR 2019 paper : TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from

Jainam Shah 243 Dec 30, 2022
This tool will help you convert your text to handwriting xD

So your teacher asked you to upload written assignments? Hate writing assigments? This tool will help you convert your text to handwriting xD

Saurabh Daware 4.2k Jan 07, 2023
基于Paddle框架的PSENet复现

PSENet-Paddle 基于Paddle框架的PSENet复现 本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 AIStudio链接 参考项目: whai362-PSENet 环境配置 本项目

QuanHao Guo 4 Apr 24, 2022
FOTS Pytorch Implementation

News!!! Recognition branch now is added into model. The whole project has beed optimized and refactored. ICDAR Dataset SynthText 800K Dataset detectio

Ning Lu 599 Dec 19, 2022
Drowsiness Detection and Alert System

A countless number of people drive on the highway day and night. Taxi drivers, bus drivers, truck drivers, and people traveling long-distance suffer from lack of sleep.

Astitva Veer Garg 4 Aug 01, 2022
This is the code for our paper DAAIN: Detection of Anomalous and AdversarialInput using Normalizing Flows

Merantix-Labs: DAAIN This is the code for our paper DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows which can be found at

Merantix 14 Oct 12, 2022
Computer vision applications project (Flask and OpenCV)

Computer Vision Applications Project This project is at it's initial phase. This is all about the implementation of different computer vision techniqu

Suryam Thapa 1 Jan 26, 2022
CellProfiler is a open-source application for biological image analysis

CellProfiler is a free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automaticall

CellProfiler 732 Dec 23, 2022
A Tensorflow model for text recognition (CNN + seq2seq with visual attention) available as a Python package and compatible with Google Cloud ML Engine.

Attention-based OCR Visual attention-based OCR model for image recognition with additional tools for creating TFRecords datasets and exporting the tra

Ed Medvedev 933 Dec 29, 2022
Table Extraction Tool

Tree Structure - Table Extraction Fonduer has been successfully extended to perform information extraction from richly formatted data such as tables.

HazyResearch 88 Jun 02, 2022
A pkg stiching around view images(4-6cameras) to generate bird's eye view.

AVP-BEV-OPEN Please check our new work AVP_SLAM_SIM A pkg stiching around view images(4-6cameras) to generate bird's eye view! View Demo · Report Bug

Xinliang Zhong 37 Dec 01, 2022
This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and flexible design and ready to be integrated right into your system!

Passport-Recogniton-System This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and fle

Mo'men Ashraf Muhamed 7 Jan 04, 2023