Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Overview

Handwritten Text Recognition with TensorFlow

  • Update 2021: more robust model, faster dataloader, word beam search decoder also available for Windows
  • Update 2020: code is compatible with TF2

Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words as shown in the illustration below. 3/4 of the words from the validation-set are correctly recognized, and the character error rate is around 10%.

htr

Run demo

Download the model trained on the IAM dataset. Put the contents of the downloaded file model.zip into the model directory of the repository. Afterwards, go to the src directory and run python main.py. The input image and the expected output is shown below.

test

> python main.py
Init with stored values from ../model/snapshot-39
Recognized: "Hello"
Probability: 0.42098119854927063

Command line arguments

  • --train: train the NN on 95% of the dataset samples and validate on the remaining 5%
  • --validate: validate the trained NN
  • --decoder: select from CTC decoders "bestpath", "beamsearch", and "wordbeamsearch". Defaults to "bestpath". For option "wordbeamsearch" see details below
  • --batch_size: batch size
  • --data_dir: directory containing IAM dataset (with subdirectories img and gt)
  • --fast: use LMDB to load images (faster than loading image files from disk)
  • --dump: dumps the output of the NN to CSV file(s) saved in the dump folder. Can be used as input for the CTCDecoder

If neither --train nor --validate is specified, the NN infers the text from the test image (data/test.png).

Integrate word beam search decoding

The word beam search decoder can be used instead of the two decoders shipped with TF. Words are constrained to those contained in a dictionary, but arbitrary non-word character strings (numbers, punctuation marks) can still be recognized. The following illustration shows a sample for which word beam search is able to recognize the correct text, while the other decoders fail.

decoder_comparison

Follow these instructions to integrate word beam search decoding:

  1. Clone repository CTCWordBeamSearch
  2. Compile and install by running pip install . at the root level of the CTCWordBeamSearch repository
  3. Specify the command line option --decoder wordbeamsearch when executing main.py to actually use the decoder

The dictionary is automatically created in training and validation mode by using all words contained in the IAM dataset (i.e. also including words from validation set) and is saved into the file data/corpus.txt. Further, the manually created list of word-characters can be found in the file model/wordCharList.txt. Beam width is set to 50 to conform with the beam width of vanilla beam search decoding.

Train model with IAM dataset

Follow these instructions to get the IAM dataset:

  • Register for free at this website
  • Download words/words.tgz
  • Download ascii/words.txt
  • Create a directory for the dataset on your disk, and create two subdirectories: img and gt
  • Put words.txt into the gt directory
  • Put the content (directories a01, a02, ...) of words.tgz into the img directory

Start the training

  • Delete files from model directory if you want to train from scratch
  • Go to the src directory and execute python main.py --train --data_dir path/to/IAM
  • Training stops after a fixed number of epochs without improvement

Fast image loading

Loading and decoding the png image files from the disk is the bottleneck even when using only a small GPU. The database LMDB is used to speed up image loading:

  • Go to the src directory and run createLMDB.py --data_dir path/to/IAM with the IAM data directory specified
  • A subfolder lmdb is created in the IAM data directory containing the LMDB files
  • When training the model, add the command line option --fast

The dataset should be located on an SSD drive. Using the --fast option and a GTX 1050 Ti training takes around 3h with a batch size of 500.

Information about model

The model is a stripped-down version of the HTR system I implemented for my thesis. What remains is what I think is the bare minimum to recognize text with an acceptable accuracy. It consists of 5 CNN layers, 2 RNN (LSTM) layers and the CTC loss and decoding layer. The illustration below gives an overview of the NN (green: operations, pink: data flowing through NN) and here follows a short description:

  • The input image is a gray-value image and has a size of 128x32
  • 5 CNN layers map the input image to a feature sequence of size 32x256
  • 2 LSTM layers with 256 units propagate information through the sequence and map the sequence to a matrix of size 32x80. Each matrix-element represents a score for one of the 80 characters at one of the 32 time-steps
  • The CTC layer either calculates the loss value given the matrix and the ground-truth text (when training), or it decodes the matrix to the final text with best path decoding or beam search decoding (when inferring)

nn_overview

References

Owner
Harald Scheidl
Interested in computer vision, deep learning, C++ and Python.
Harald Scheidl
Pure Javascript OCR for more than 100 Languages 📖🎉🖥

Version 2 is now available and under development in the master branch, read a story about v2: Why I refactor tesseract.js v2? Check the support/1.x br

Project Naptha 29.2k Jan 05, 2023
WACV 2022 Paper - Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching

Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching Code based on our WACV 2022 Accepted Paper: https://arxiv.org/pdf/

Andres 13 Dec 17, 2022
Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that slide and lock together.

Fusion-360-Add-In-PuzzleSpline Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that sli

Michiel van Wessem 1 Nov 15, 2021
fishington.io bot with OpenCV and NumPy

fishington.io-bot fishington.io bot with using OpenCV and NumPy bot can continue to fishing fully automatically how to use Open cmd in fishington.io-b

Bahadır Araz 77 Jan 02, 2023
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.

Learning to Segment Every Thing This repository contains the code for the following paper: R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning

Ronghang Hu 417 Oct 03, 2022
Volume Control using OpenCV

Gesture-Volume-Control Volume Control using OpenCV Here i made volume control using Python and OpenCV in which we can control the volume of our laptop

Mudit Sinha 3 Oct 10, 2021
An OCR evaluation tool

dinglehopper dinglehopper is an OCR evaluation tool and reads ALTO, PAGE and text files. It compares a ground truth (GT) document page with a OCR resu

QURATOR-SPK 40 Dec 20, 2022
Slice a single image into multiple pieces and create a dataset from them

OpenCV Image to Dataset Converter Slice a single image of Persian digits into mu

Meysam Parvizi 14 Dec 29, 2022
Camelot: PDF Table Extraction for Humans

Camelot: PDF Table Extraction for Humans Camelot is a Python library that makes it easy for anyone to extract tables from PDF files! Note: You can als

Atlan Technologies Pvt Ltd 3.3k Dec 31, 2022
Automatically remove the mosaics in images and videos, or add mosaics to them.

Automatically remove the mosaics in images and videos, or add mosaics to them.

Hypo 1.4k Dec 30, 2022
An application of high resolution GANs to dewarp images of perturbed documents

Docuwarp This project is focused on dewarping document images through the usage of pix2pixHD, a GAN that is useful for general image to image translat

Thomas Huang 97 Dec 25, 2022
Semantic-based Patch Detection for Binary Programs

PMatch Semantic-based Patch Detection for Binary Programs Requirement tensorflow-gpu 1.13.1 numpy 1.16.2 scikit-learn 0.20.3 ssdeep 3.4 Usage tar -xvz

Mr.Curiosity 3 Sep 02, 2022
STEFANN: Scene Text Editor using Font Adaptive Neural Network

STEFANN: Scene Text Editor using Font Adaptive Neural Network @ The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.

Prasun Roy 208 Dec 11, 2022
An interactive document scanner built in Python using OpenCV

The scanner takes a poorly scanned image, finds the corners of the document, applies the perspective transformation to get a top-down view of the document, sharpens the image, and applies an adaptive

Kushal Shingote 1 Feb 12, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
Opencv face recognition desktop application

Opencv-Face-Recognition Opencv face recognition desktop application Program developed by Gustavo Wydler Azuaga - 2021-11-19 Screenshots of the program

Gus 1 Nov 19, 2021
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV)

About PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV) Colorizor Приложение для проекта Yand

1 Apr 04, 2022
A real-time dolly zoom camera effect

Dolly-Zoom I've always been amazed by the gradual perspective change of dolly zoom, and I have some experience in python and OpenCV, so I decided to c

Dylan Kai Lau 52 Dec 08, 2022