Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.

Overview

Learning to Segment Every Thing

This repository contains the code for the following paper:

  • R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning to Segment Every Thing. in CVPR, 2018. (PDF)
@inproceedings{hu2018learning,
  title={Learning to Segment Every Thing},
  author={Hu, Ronghang and Dollár, Piotr and He, Kaiming and Darrell, Trevor and Girshick, Ross},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2018}
}

Project Page: http://ronghanghu.com/seg_every_thing

Note: this repository is built upon the Detectron codebase for object detection and segmentation (https://github.com/facebookresearch/Detectron), based on Detectron commit 3c4c7f67d37eeb4ab15a87034003980a1d259c94. Please see README_DETECTRON.md for details.

Installation

The installation procedure follows Detectron.

Please find installation instructions for Caffe2 and Detectron in INSTALL.md.

Note: all the experiments below run on 8 GPUs on a single machine. If you have less than 8 GPU available, please modify the yaml config files according to the linear scaling rule. For example, if you only have 4 GPUs, set NUM_GPUS to 4, downscale SOLVER.BASE_LR by 0.5x and multiply SOLVER.STEPS and SOLVER.MAX_ITER by 2x.

Part 1: Controlled Experiments on the COCO dataset

In this work, we explore our approach in two settings. First, we use the COCO dataset to simulate the partially supervised instance segmentation task as a means of establishing quantitative results on a dataset with high-quality annotations and evaluation metrics. Specifically, we split the full set of COCO categories into a subset with mask annotations and a complementary subset for which the system has access to only bounding box annotations. Because the COCO dataset involves only a small number (80) of semantically well-separated classes, quantitative evaluation is precise and reliable.

In our experiments, we split COCO into either

  • VOC Split: 20 PASCAL-VOC classes v.s. 60 non-PASCAL-VOC classes. We experiment with 1) VOC -> non-VOC, where set A={VOC} and 2) non-VOC -> VOC, where set A={non-VOC}.
  • Random Splits: randomly partitioned two subsets A and B of the 80 COCO classes.

and experiment with two training setups:

  • Stage-wise training, where first a Faster R-CNN detector is trained and kept frozen, and then the mask branch (including the weight transfer function) is added later.
  • End-to-end training, where the RPN, the box head, the mask head and the weight transfer function are trained together.

Please refer to Section 4 of our paper for details on the COCO experiments.

COCO Installation: To run the COCO experiments, first download the COCO dataset and install it according to the dataset guide.

Evaluation

The following experiments correspond to the results in Section 4.2 and Table 2 of our paper.

To run the experiments:

  1. Split the COCO dataset into VOC / non-VOC classes:
    python2 lib/datasets/bbox2mask_dataset_processing/coco/split_coco_dataset_voc_nonvoc.py.
  2. Set the training split using SPLIT variable:
  • To train on VOC -> non-VOC, where set A={VOC}, use export SPLIT=voc2nonvoc.
  • To train on non-VOC -> VOC, where set A={non-VOC}, use export SPLIT=nonvoc2voc.

Then use tools/train_net.py to run the following yaml config files for each experiment with ResNet-50-FPN backbone or ResNet-101-FPN backbone.

Please follow the instruction in GETTING_STARTED.md to train with the config files. The training scripts automatically test the trained models and print the bbox and mask APs on the VOC ('coco_split_voc_2014_minival') and non-VOC splits ('coco_split_nonvoc_2014_minival').

Using ResNet-50-FPN backbone:

  1. Class-agnostic (baseline): configs/bbox2mask_coco/${SPLIT}/eval_e2e/e2e_baseline.yaml
  2. MaskX R-CNN (ours, tansfer+MLP): configs/bbox2mask_coco/${SPLIT}/eval_e2e/e2e_clsbox_2_layer_mlp_nograd.yaml
  3. Fully-supervised (oracle): configs/bbox2mask_coco/oracle/e2e_mask_rcnn_R-50-FPN_1x.yaml

Using ResNet-101-FPN backbone:

  1. Class-agnostic (baseline): configs/bbox2mask_coco/${SPLIT}/eval_e2e_R101/e2e_baseline.yaml
  2. MaskX R-CNN (ours, tansfer+MLP): configs/bbox2mask_coco/${SPLIT}/eval_e2e_R101/e2e_clsbox_2_layer_mlp_nograd.yaml
  3. Fully-supervised (oracle): configs/bbox2mask_coco/oracle/e2e_mask_rcnn_R-101-FPN_1x.yaml

Ablation Study

This section runs ablation studies on the VOC Split (20 PASCAL-VOC classes v.s. 60 non-PASCAL-VOC classes) using ResNet-50-FPN backbone. The results correspond to Section 4.1 and Table 1 of our paper.

To run the experiments:

  1. (If you haven't done so in the above section) Split the COCO dataset into VOC / non-VOC classes:
    python2 lib/datasets/bbox2mask_dataset_processing/coco/split_coco_dataset_voc_nonvoc.py.
  2. For Study 1, 2, 3 and 5, download the pre-trained Faster R-CNN model with ResNet-50-FPN by running
    bash lib/datasets/data/trained_models/fetch_coco_faster_rcnn_model.sh.
    (Alternatively, you can train it yourself using configs/12_2017_baselines/e2e_faster_rcnn_R-50-FPN_1x.yaml and copy it to lib/datasets/data/trained_models/28594643_model_final.pkl.)
  3. For Study 1, add the GloVe and random embeddings of the COCO class names to the Faster R-CNN weights with
    python2 lib/datasets/bbox2mask_dataset_processing/coco/add_embeddings_to_weights.py.
  4. Set the training split using SPLIT variable:
  • To train on VOC -> non-VOC, where set A={VOC}, use export SPLIT=voc2nonvoc.
  • To train on non-VOC -> VOC, where set A={non-VOC}, use export SPLIT=nonvoc2voc.

Then use tools/train_net.py to run the following yaml config files for each experiment.

Study 1: Ablation on the input to the weight transfer function (Table 1a)

  • transfer w/ randn: configs/bbox2mask_coco/${SPLIT}/ablation_input/randn_2_layer.yaml
  • transfer w/ GloVe: configs/bbox2mask_coco/${SPLIT}/ablation_input/glove_2_layer.yaml
  • transfer w/ cls: configs/bbox2mask_coco/${SPLIT}/ablation_input/cls_2_layer.yaml
  • transfer w/ box: configs/bbox2mask_coco/${SPLIT}/ablation_input/box_2_layer.yaml
  • transfer w/ cls+box: configs/bbox2mask_coco/${SPLIT}/eval_sw/clsbox_2_layer.yaml
  • class-agnostic (baseline): configs/bbox2mask_coco/${SPLIT}/eval_sw/baseline.yaml
  • fully supervised (oracle): configs/bbox2mask_coco/oracle/mask_rcnn_frozen_features_R-50-FPN_1x.yaml

Study 2: Ablation on the structure of the weight transfer function (Table 1b)

  • transfer w/ 1-layer, none: configs/bbox2mask_coco/${SPLIT}/ablation_structure/clsbox_1_layer.yaml
  • transfer w/ 2-layer, ReLU: configs/bbox2mask_coco/${SPLIT}/ablation_structure/relu/clsbox_2_layer_relu.yaml
  • transfer w/ 2-layer, LeakyReLU: same as 'transfer w/ cls+box' in Study 1
  • transfer w/ 3-layer, ReLU: configs/bbox2mask_coco/${SPLIT}/ablation_structure/relu/clsbox_3_layer_relu.yaml
  • transfer w/ 3-layer, LeakyReLU: configs/bbox2mask_coco/${SPLIT}/ablation_structure/clsbox_3_layer.yaml

Study 3: Impact of the MLP mask branch (Table 1c)

  • class-agnostic: same as 'class-agnostic (baseline)' in Study 1
  • class-agnostic+MLP: configs/bbox2mask_coco/${SPLIT}/ablation_mlp/baseline_mlp.yaml
  • transfer: same as 'transfer w/ cls+box' in Study 1
  • transfer+MLP: configs/bbox2mask_coco/${SPLIT}/ablation_mlp/clsbox_2_layer_mlp.yaml

Study 4: Ablation on the training strategy (Table 1d)

  • class-agnostic + sw: same as 'class-agnostic (baseline)' in Study 1
  • transfer + sw: same as 'transfer w/ cls+box' in Study 1
  • class-agnostic + e2e: configs/bbox2mask_coco/${SPLIT}/eval_e2e/e2e_baseline.yaml
  • transfer + e2e: configs/bbox2mask_coco/${SPLIT}/ablation_e2e_stopgrad/e2e_clsbox_2_layer.yaml
  • transfer + e2e + stopgrad: configs/bbox2mask_coco/${SPLIT}/ablation_e2e_stopgrad/e2e_clsbox_2_layer_nograd.yaml

Study 5: Comparison of random A/B splits (Figure 3)

Note: this ablation study takes a HUGE amount of computation power. It consists of 50 training experiments (= 5 trials * 5 class-number in set A (20/30/40/50/60) * 2 settings (ours/baseline) ), and each training experiment takes approximately 9 hours to complete on 8 GPUs.

Before running Study 5:

  1. Split the COCO dataset into random class splits (This should take a while):
    python2 lib/datasets/bbox2mask_dataset_processing/coco/split_coco_dataset_randsplits.py.
  2. Set the training split using SPLIT variable (e.g. export SPLIT=E1_A20B60). The split has the format E%d_A%dB%d for example, E1_A20B60 is trial No. 1 with 20 random classes in set A and 60 random classes in set B. There are 5 trials (E1 to E5), with 20/30/40/50/60 random classes in set A (A20B60 to A60B20), yielding altogether 25 splits from E1_A20B60 to E5_A60B20.

Then use tools/train_net.py to run the following yaml config files for each experiment.

  • class-agnostic (baseline): configs/bbox2mask_coco/randsplits/eval_sw/${SPLIT}_baseline.yaml
  • tansfer w/ cls+box, 2-layer, LeakyReLU: configs/bbox2mask_coco/randsplits/eval_sw/${SPLIT}_clsbox_2_layer.yaml

Part 2: Large-scale Instance Segmentation on the Visual Genome dataset

In our second setting, we train a large-scale instance segmentation model on 3000 categories using the Visual Genome (VG) dataset. On the Visual Genome dataset, set A (w/ mask data) is the 80 COCO classes, while set B (w/o mask data, only bbox) is the remaining Visual Genome classes that are not in COCO.

Please refer to Section 5 of our paper for details on the Visual Genome experiments.

Inference

To run inference, download the pre-trained final model weights by running:
bash lib/datasets/data/trained_models/fetch_vg3k_final_model.sh
(Alternatively, you may train these weights yourself following the training section below.)

Then, use tools/infer_simple.py for prediction. Note: due to the large number of classes and the model loading overhead, prediction on the first image can take a while.

Using ResNet-50-FPN backbone:

python2 tools/infer_simple.py \
    --cfg configs/bbox2mask_vg/eval_sw/runtest_clsbox_2_layer_mlp_nograd.yaml \
    --output-dir /tmp/detectron-visualizations-vg3k \
    --image-ext jpg \
    --thresh 0.5 --use-vg3k \
    --wts lib/datasets/data/trained_models/33241332_model_final_coco2vg3k_seg.pkl \
    demo_vg3k

Using ResNet-101-FPN backbone:

python2 tools/infer_simple.py \
    --cfg configs/bbox2mask_vg/eval_sw_R101/runtest_clsbox_2_layer_mlp_nograd_R101.yaml \
    --output-dir /tmp/detectron-visualizations-vg3k-R101 \
    --image-ext jpg \
    --thresh 0.5 --use-vg3k \
    --wts lib/datasets/data/trained_models/33219850_model_final_coco2vg3k_seg.pkl \
    demo_vg3k

Training

Visual Genome Installation: To run the Visual Genome experiments, first download the Visual Genome dataset and install it according to the dataset guide. Then download the converted Visual Genome json dataset files (in COCO-format) by running:
bash lib/datasets/data/vg3k_bbox2mask/fetch_vg3k_json.sh.
(Alternatively, you may build the COCO-format json dataset files yourself using the scripts in lib/datasets/bbox2mask_dataset_processing/vg/)

Here, we adopt the stage-wise training strategy as mentioned in Section 5 of our paper. First in Stage 1, a Faster R-CNN detector is trained on all the 3k Visual Genome classes (set A+B). Then in Stage 2, the mask branch (with the weight transfer function) is added and trained on the mask data of the 80 COCO classes (set A). Finally, the mask branch is applied on all 3k Visual Genome classes (set A+B).

Before training on the mask data of the 80 COCO classes (set A) in Stage 2, a "surgery" is done to convert the 3k VG detection weights to 80 COCO detection weights, so that the mask branch only predicts mask outputs of the 80 COCO classes (as the weight transfer function only takes as input 80 classes) to save GPU memory. After training, another "surgery" is done to convert the 80 COCO detection weights back to the 3k VG detection weights.

To run the experiments, use tools/train_net.py to run the following yaml config files for each experiment with ResNet-50-FPN backbone or ResNet-101-FPN backbone.

Using ResNet-50-FPN backbone:

  1. Stage 1 (bbox training on 3k VG classes): run tools/train_net.py with configs/bbox2mask_vg/eval_sw/stage1_e2e_fast_rcnn_R-50-FPN_1x_1im.yaml
  2. Weights "surgery" 1: convert 3k VG detection weights to 80 COCO detection weights:
    python2 tools/vg3k_training/convert_coco_seg_to_vg3k.py --input_model /path/to/model_1.pkl --output_model /path/to/model_1_vg3k2coco_det.pkl
    where /path/to/model_1.pkl is the path to the final model trained in Stage 1 above.
  3. Stage 2 (mask training on 80 COCO classes): run tools/train_net.py with configs/bbox2mask_vg/eval_sw/stage2_cocomask_clsbox_2_layer_mlp_nograd.yaml
    IMPORTANT: when training Stage 2, set TRAIN.WEIGHTS to /path/to/model_1_vg3k2coco_det.pkl (the output of convert_coco_seg_to_vg3k.py) in tools/train_net.py.
  4. Weights "surgery" 2: convert 80 COCO detection weights back to 3k VG detection weights:
    python2 tools/vg3k_training/convert_vg3k_det_to_coco.py --input_model /path/to/model_2.pkl --output_model /path/to/model_2_coco2vg3k_seg.pkl
    where /path/to/model_2.pkl is the path to the final model trained in Stage 2 above. The output /path/to/model_2_coco2vg3k_seg.pkl can be used for VG 3k instance segmentation.

Using ResNet-101-FPN backbone:

  1. Stage 1 (bbox training on 3k VG classes): run tools/train_net.py with configs/bbox2mask_vg/eval_sw_R101/stage1_e2e_fast_rcnn_R-101-FPN_1x_1im.yaml
  2. Weights "surgery" 1: convert 3k VG detection weights to 80 COCO detection weights:
    python2 tools/vg3k_training/convert_coco_seg_to_vg3k.py --input_model /path/to/model_1.pkl --output_model /path/to/model_1_vg3k2coco_det.pkl
    where /path/to/model_1.pkl is the path to the final model trained in Stage 1 above.
  3. Stage 2 (mask training on 80 COCO classes): run tools/train_net.py with configs/bbox2mask_vg/eval_sw_R101/stage2_cocomask_clsbox_2_layer_mlp_nograd_R101.yaml
    IMPORTANT: when training Stage 2, set TRAIN.WEIGHTS to /path/to/model_1_vg3k2coco_det.pkl (the output of convert_coco_seg_to_vg3k.py) in tools/train_net.py.
  4. Weights "surgery" 2: convert 80 COCO detection weights back to 3k VG detection weights:
    python2 tools/vg3k_training/convert_vg3k_det_to_coco.py --input_model /path/to/model_2.pkl --output_model /path/to/model_2_coco2vg3k_seg.pkl
    where /path/to/model_2.pkl is the path to the final model trained in Stage 2 above. The output /path/to/model_2_coco2vg3k_seg.pkl can be used for VG 3k instance segmentation.

(Alternatively, you may skip Stage 1 and Weights "surgery" 1 by directly downloading the pre-trained VG 3k detection weights by running bash lib/datasets/data/trained_models/fetch_vg3k_faster_rcnn_model.sh, and leaving TRAIN.WEIGHTS to the specified values in the yaml configs in Stage 2.)

Owner
Ronghang Hu
Research Scientist, Facebook AI Research (FAIR)
Ronghang Hu
A simple python program to record security cam footage by detecting a face and body of a person in the frame.

SecurityCam A simple python program to record security cam footage by detecting a face and body of a person in the frame. This code was created by me,

1 Nov 08, 2021
Fully-automated scripts for collecting AI-related papers

AI-Paper-Collector Web demo: https://ai-paper-collector.vercel.app/ (recommended) Colab notebook: here Motivation Fully-automated scripts for collecti

772 Dec 30, 2022
A bot that extract text from images using the Tesseract OCR.

Text from image (OCR) @ocr_text_bot A simple bot to extract text from images. Usage What do I need? A AWS key configured locally, see here. NodeJS. I

Weverton Marques 4 Aug 06, 2021
Text to QR-CODE

QR CODE GENERATO USING PYTHON Author : RAFIK BOUDALIA. Installation Use the package manager pip to install foobar. pip install pyqrcode Usage from tki

Rafik Boudalia 2 Oct 13, 2021
caffe re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection

R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection Abstract This is a caffe re-implementation of R2CNN: Rotational Region CNN fo

candler 80 Dec 28, 2021
Polaris is a Face recognition attendance system .

Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store

XN3UR0N 215 Dec 26, 2022
Crop regions in napari manually

napari-crop Crop regions in napari manually Usage Create a new shapes layer to annotate the region you would like to crop: Use the rectangle tool to a

Robert Haase 4 Sep 29, 2022
Face_mosaic - Mosaic blur processing is applied to multiple faces appearing in the video

動機 face_recognitionを使用して得られる顔座標は長方形であり、この座標をそのまま用いてぼかし処理を行った場合得られる画像は醜い。 それに対してモ

Yoshitsugu Kesamaru 6 Feb 03, 2022
Generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv

basic-dataset-generator-from-image-of-numbers generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv inpu

1 Jan 01, 2022
Detect and fix skew in images containing text

Alyn Skew detection and correction in images containing text Image with skew Image after deskew Install and use via pip! Recommended way(using virtual

Kakul 230 Dec 21, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 91 Nov 22, 2022
Image Recognition Model Generator

Takes a user-inputted query and generates a machine learning image recognition model that determines if an inputted image is or isn't their query

Christopher Oka 1 Jan 13, 2022
EAST for ICPR MTWI 2018 Challenge II (Text detection of network images)

EAST_ICPR2018: EAST for ICPR MTWI 2018 Challenge II (Text detection of network images) Introduction This is a repository forked from argman/EAST for t

QichaoWu 49 Dec 24, 2022
This repository contains the code for the paper "SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks"

SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks (CVPR 2021 Oral) This repository contains the official PyTorch implementation

Shunsuke Saito 235 Dec 18, 2022
A tool to enhance your old/damaged pictures built using python & opencv.

Breathe Life into your Old Pictures Table of Contents About The Project Getting Started Prerequisites Usage Contact Acknowledgments About The Project

Shah Anwaar Khalid 5 Dec 16, 2021
CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering" official PyTorch implementation.

LED2-Net This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering". Y

Fu-En Wang 83 Jan 04, 2023
A Tensorflow model for text recognition (CNN + seq2seq with visual attention) available as a Python package and compatible with Google Cloud ML Engine.

Attention-based OCR Visual attention-based OCR model for image recognition with additional tools for creating TFRecords datasets and exporting the tra

Ed Medvedev 933 Dec 29, 2022
Generate a list of papers with publicly available source code in the daily arxiv

2021-06-08 paper code optimal network slicing for service-oriented networks with flexible routing and guaranteed e2e latency networkslicing multi-moda

79 Jan 03, 2023
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Augmenting Anchors by the Detector Itself

Augmenting Anchors by the Detector Itself Introduction It is difficult to determine the scale and aspect ratio of anchors for anchor-based object dete

4 Nov 06, 2022