caffe re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection

Overview

R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection

Abstract

This is a caffe re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection.

This project is modified from py-R-FCN, and inclined nms and generate rotated box component is imported from EAST project. Thanks for the author's(@zxytim @argman) help. Please cite this paper if you find this useful.

Contents

  1. Abstract
  2. Structor
  3. Installation
  4. Demo
  5. Test
  6. Train
  7. Experiments
  8. Furthermore

Structor

Code structor

.
├── docker-compose.yml
├── docker // docker deps file
├── Dockerfile // docker build file
├── model // model directory
│   ├── caffemodel // trained caffe model
│   ├── icdar15_gt // ICDAR2015 groundtruth
│   ├── prototxt // caffe prototxt file
│   └── imagenet_models // pretrained on imagenet
├── nvidia-docker-compose.yml
├── logs
│   ├── submit // original submit file
│   ├── submit_zip // zip submit file
│   ├── snapshots
│   └── train
│       ├── VGG16.txt.*
│       └── snapshots
├── README.md
├── requirements.txt // python package
├── src
│   ├── cfgs // train config yml
│   ├── data // cache file
│   ├── lib
│   ├── _init_path.py
│   ├── demo.py
│   ├── eval_icdar15.py // eval 2015 icdar dataset F-meaure
│   ├── test_net.py
│   └── train_net.py
├── demo.sh
├── train.sh
├── images // test images
│   ├── img_1.jpg
│   ├── img_2.jpg
│   ├── img_3.jpg
│   ├── img_4.jpg
│   └── img_5.jpg
└── test.sh // test script

Data structor

It should have this basic structure

ICDARdevkit_Root
.
├── ICDAR2013
├── merge_train.txt  // images list contains ICDAR2013+ICDAR2015 train dataset, then raw data augmentation the same as the paper
├── ICDAR2015
│   ├── augmentation // contains all augmented images
│   └── ImageSets/Main/test.txt // ICDAR2015 test images list

Installation

Install caffe

It is highly recommended to use docker to build environment. More about how to configure docker, see Running with Docker If you are familiar with docker, please run

    1. nvidia-docker-compose run --rm --service-ports rrcnn bash
    2. bash ./demo.sh

If you don't familiar with docker, please follow py-R-FCN to install caffe.

Build

    cd src/lib && make
    

Download Model

  1. please download VGG16 pre-trained model on Imagenet, place it to model/imagenet_models/VGG16.v2.caffemodel.
  2. please download VGG16 trained model by this project, place it model/caffemodel/TextBoxes-v2_iter_12w.caffemodel.

Demo

It is recommended to use UNIX socket to support GUI for docker, plesase open another terminal and type:

    xhost + # may be you need it when open a new terminal
    # docker-compose.yml: mount host  volume : /tmp/.X11-unix to docker volume: /tmp/.X11-unix  
    # pass DISPLAY variable to docker container so host X server can display image in docker
    docker exec -it -e DISPLAY=$DISPLAY ${CURRENT_CONTAINER_ID} bash
    bash ./demo.sh

Test

Single Test

    bash ./test.sh

Multi-scale Test

    # please uncomment two lines in src/cfgs/faster_rcnn_end2end.yml
    SCALES: [720, 1200]
    MULTI_SCALES_NOC: True
    # modify src/lib/datasets/icdar.py to find ICDAR2015 test data, please refer to commit @bbac1cf
    # then run
    bash ./test.sh

Train

Train data

  • Mine: ICDAR2013+ICDAR2015 train dataset, and raw data augmentation, at last got 15977 images.
  • Paper: ICDAR2015 + 2000 focused scene text images they collected.

Train commands

  1. Go to ./src/lib/datasets/icdar.py, modify images path to let train.py find merge_train.txt images list.
  2. Remove cache in src/data/*.pkl or you can load cached roidb data of this project, and place it to src/data/
    # Train for RRCNN4-TextBoxes-v2-OHEM
    bash ./train.sh

note: If you use USE_FLIPPED=True&USE_FLIPPED_QUAD=True, you will get almost 31200 roidb.

Experiments

Mine VS Paper

Approaches Anchor Scales Pooled sizes Inclined NMS Test scales(short side) F-measure(Mine VS paper)
R2CNN-2 (4, 8, 16) (7, 7) Y (720) 71.12% VS 68.49%
R2CNN-3 (4, 8, 16) (7, 7) Y (720) 73.10% VS 74.29%
R2CNN-4 (4, 8, 16, 32) (7, 7) Y (720) 74.14% VS 74.36%
R2CNN-4 (4, 8, 16, 32) (7, 7) Y (720, 1200) 79.05% VS 81.80%
R2CNN-5 (4, 8, 16, 32) (7, 7) (11, 3) (3, 11) Y (720) 74.34% VS 75.34%
R2CNN-5 (4, 8, 16, 32) (7, 7) (11, 3) (3, 11) Y (720, 1200) 78.70% VS 82.54%

Appendixes

Approaches Anchor Scales aspect ration Pooled sizes Inclined NMS Test scales(short side) F-measure
R2CNN-4 (4, 8, 16, 32) (0.5, 1, 2) (7, 7) Y (720) 74.36%
R2CNN-4 (4, 8, 16, 32) (0.5, 1, 2) (7, 7) Y (720, 1200) VS 81.80%
R2CNN-4-TextBoxes-OHEM (4, 8, 16, 32) (0.5, 1, 2, 3, 5, 7, 10) (7, 7) Y (720) 76.53%

Furthermore

You can try Resnet-50, Resnet-101 and so on.

Owner
candler
a computer vision worker
candler
fishington.io bot with OpenCV and NumPy

fishington.io-bot fishington.io bot with using OpenCV and NumPy bot can continue to fishing fully automatically how to use Open cmd in fishington.io-b

Bahadır Araz 77 Jan 02, 2023
https://arxiv.org/abs/1904.01941

Character-Region-Awareness-for-Text-Detection- https://arxiv.org/abs/1904.01941 Train You can train SynthText data use python source/train_SynthText.p

DayDayUp 120 Dec 28, 2022
Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

Jin-Fan Hu (胡锦帆) 11 Dec 12, 2022
Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Abdulazeez Jimoh 1 Jan 01, 2022
Text to QR-CODE

QR CODE GENERATO USING PYTHON Author : RAFIK BOUDALIA. Installation Use the package manager pip to install foobar. pip install pyqrcode Usage from tki

Rafik Boudalia 2 Oct 13, 2021
Automatically resolve RidderMaster based on TensorFlow & OpenCV

AutoRiddleMaster Automatically resolve RidderMaster based on TensorFlow & OpenCV 基于 TensorFlow 和 OpenCV 实现的全自动化解御迷士小马谜题 Demo How to use Deploy the ser

神龙章轩 5 Nov 19, 2021
It is a image ocr tool using the Tesseract-OCR engine with the pytesseract package and has a GUI.

OCR-Tool It is a image ocr tool made in Python using the Tesseract-OCR engine with the pytesseract package and has a GUI. This is my second ever pytho

Khant Htet Aung 4 Jul 11, 2022
Face Anonymizer - FaceAnonApp v1.0

Face Anonymizer - FaceAnonApp v1.0 Blur faces from image and video files in /data/files folder. Contents Repo of the source files for the FaceAnonApp.

6 Apr 18, 2022
Line based ATR Engine based on OCRopy

OCR Engine based on OCRopy and Kraken using python3. It is designed to both be easy to use from the command line but also be modular to be integrated

948 Dec 23, 2022
MXNet OCR implementation. Including text recognition and detection.

insightocr Text Recognition Accuracy on Chinese dataset by caffe-ocr Network LSTM 4x1 Pooling Gray Test Acc SimpleNet N Y Y 99.37% SE-ResNet34 N Y Y 9

Deep Insight 99 Nov 01, 2022
Super Mario Game With Python

Super_Mario Hello all this is a simple python program which tries to use our body as a controller for the super mario game Here I have used media pipe

Adarsh Badagala 219 Nov 25, 2022
零样本学习测评基准,中文版

ZeroCLUE 零样本学习测评基准,中文版 零样本学习是AI识别方法之一。 简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别, 还可以对于来自未见过的类别的数据进行区分。 这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据, 很符合现

CLUE benchmark 27 Dec 10, 2022
基于openpose和图像分类的手语识别项目

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

20 Dec 15, 2022
This repository contains the code for the paper "SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks"

SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks (CVPR 2021 Oral) This repository contains the official PyTorch implementation

Shunsuke Saito 235 Dec 18, 2022
Generate text images for training deep learning ocr model

New version release:https://github.com/oh-my-ocr/text_renderer Text Renderer Generate text images for training deep learning OCR model (e.g. CRNN). Su

Qing 1.2k Jan 04, 2023
Application that instantly translates sign-language to letters.

Sign Language Translator Project Description The main purpose of project is translating sign-language to letters. In accordance with this purpose we d

3 Sep 29, 2022
A curated list of papers, code and resources pertaining to image composition

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

BCMI 391 Dec 30, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
An easy to use an (hopefully useful) captcha solution for pyTelegramBotAPI

pyTelegramBotCAPTCHA An easy to use and (hopefully useful) image CAPTCHA soltion for pyTelegramBotAPI. Installation: pip install pyTelegramBotCAPTCHA

29 Dec 26, 2022
CTPN + DenseNet + CTC based end-to-end Chinese OCR implemented using tensorflow and keras

简介 基于Tensorflow和Keras实现端到端的不定长中文字符检测和识别 文本检测:CTPN 文本识别:DenseNet + CTC 环境部署 sh setup.sh 注:CPU环境执行前需注释掉for gpu部分,并解开for cpu部分的注释 Demo 将测试图片放入test_images

Yang Chenguang 2.6k Dec 29, 2022