Augmenting Anchors by the Detector Itself

Related tags

Computer Visionaadi
Overview

Augmenting Anchors by the Detector Itself

Introduction

It is difficult to determine the scale and aspect ratio of anchors for anchor-based object detection methods. Current state-of-the-art object detectors either determine anchor parameters according to objects' shape and scale in a dataset, or avoid this problem by utilizing anchor-free method. In this paper, we propose a gradient-free anchor augmentation method named AADI, which means Augmenting Anchors by the Detector Itself. AADI is not an anchor-free method, but it converts the scale and aspect ratio of anchors from a continuous space to a discrete space, which greatly alleviates the problem of anchors' designation. Furthermore, AADI does not add any parameters or hyper-parameters, which is beneficial for future research and downstream tasks. Extensive experiments on COCO dataset show that AADI has obvious advantages for both two-stage and single-stage methods, specifically, AADI achieves at least 2.1 AP improvements on Faster R-CNN and 1.6 AP improvements on RetinaNet, using ResNet-50 model. We hope that this simple and cost-efficient method can be widely used in object detection.

  • For RPN

    • Baseline

      Num anchors AR100 AR1000 ARs ARm ARl
      1 45.5 55.6 31.4 52.8 60.0
      3 45.7 58.0 31.4 52.7 61.1
    • Ablation Study

      dilation Anchor Guided AR100 AR1000 ARs ARm ARl
      1 52.8 60.6 40.2 60.8 63.6
      2 54.8 64.7 39.0 63.1 70.6
      2 56.3 66.7 39.5 64.9 73.4
      3 53.7 64.0 35.4 62.1 73.9
      3 55.6 67.6 36.1 64.3 77.6
      4 52.2 60.5 30.9 61.3 76.6
      4 54.4 65.5 33.0 63.7 78.9
  • For RetinaNet

    • Ablation Study

      AADI dilation AP AP50 AP75 APs APm APl
      1 38.2 58.4 41.1 24.3 42.2 48.5
      1 37.3 56.4 40.2 22.0 39.9 46.8
      2 39.8 57.5 43.5 22.1 43.5 50.6
      3 38.3 54.6 41.7 20.0 43.1 51.1
    • With IoU

      AP AP50 AP75 APs APm APl
      40.2 57.7 43.8 24.1 43.1 52.2
    • With 3x schedule (RetinaNet with giou, AADI with smooth l1)

      Model AP AP50 AP75 APs APm APl
      RetinaNet 39.6 59.3 42.2 24.9 43.3 50.7
      AADI-RetinaNet 41.4 59.3 45.2 24.8 44.9 54.0
  • For Faster R-CNN

    • Ablation Study

      AADI dilation AP AP50 AP75 APs APm APl FPS
      1(3 anchors) 37.9 58.8 41.1 22.4 41.1 49.1 26.3
      2 40.3 59.3 44.3 24.2 43.3 52.2 22.4
      3 40.8 59.5 45.0 24.0 44.6 53.1 22.4
      4 40.5 58.7 44.6 23.2 44.8 52.7 22.3
    • 3x schedule

      Backbone AP AP50 AP75 APs APm APl FPS
      R-50 FPN 42.5 61.2 46.5 25.3 46.2 55.5 22.6
      DCN-50 FPN 44.1 63.1 48.2 28.3 46.9 58.4 20.1
      R-101 FPN 44.5 63.2 48.7 26.9 48.3 57.4 17.4
  • Detectron2

Detectron2 is Facebook AI Research's next generation library that provides state-of-the-art detection and segmentation algorithms. It is the successor of Detectron and maskrcnn-benchmark. It supports a number of computer vision research projects and production applications in Facebook.

Installation

See installation instructions.

Getting Started

See Getting Started with Detectron2, and the Colab Notebook to learn about basic usage.

Learn more at our documentation.

Citing Detectron2

@misc{wu2019detectron2,
  author =       {Yuxin Wu and Alexander Kirillov and Francisco Massa and
                  Wan-Yen Lo and Ross Girshick},
  title =        {Detectron2},
  howpublished = {\url{https://github.com/facebookresearch/detectron2}},
  year =         {2019}
}

@misc{wan2021augmenting,
      title={Augmenting Anchors by the Detector Itself}, 
      author={Xiaopei Wan and Shengjie Chen and Yujiu Yang and Zhenhua Guo and Fangbo Tao},
      year={2021},
      eprint={2105.14086},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Subramanyam 76 Dec 06, 2022
Optical character recognition for Japanese text, with the main focus being Japanese manga

Manga OCR Optical character recognition for Japanese text, with the main focus being Japanese manga. It uses a custom end-to-end model built with Tran

Maciej Budyś 327 Jan 01, 2023
Qrcode Attendence System with Opencv and Pyzbar

Setup process Creates a virtual environment (Scripts that ensure executed Python code uses the Python interpreter and site packages installed inside t

Ganesh 5 Aug 01, 2022
Connect Aseprite to Blender for painting pixelart textures in real time

Pribambase Pribambase is a small tool that connects Aseprite and Blender, to allow painting with instant viewport feedback and all functionality of ex

117 Jan 03, 2023
Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

DataTuner You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task. See LICENSE.txt for license de

81 Jan 01, 2023
chineseocr/table_line 表格线检测模型pytorch版

table_line_pytorch chineseocr/table_detct 表格线检测模型table_line pytorch版 原项目github: https://github.com/chineseocr/table-detect 1、模型转换 下载原项目table_detect模型文

1 Oct 21, 2021
(CVPR 2021) ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection

ST3D Code release for the paper ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection, CVPR 2021 Authors: Jihan Yang*, Shaoshu

CVMI Lab 224 Dec 28, 2022
This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the robots of the future.

This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the

Elkin Javier Guerra Galeano 17 Nov 03, 2022
A python screen recorder for low-end computers, provides high quality video output.

RecorderX - v1.0 A screen recorder made in Python with the help of OpenCv, it has ability to record your screen in high quality. No matter what your P

Priyanshu Jindal 4 Nov 10, 2021
Face_mosaic - Mosaic blur processing is applied to multiple faces appearing in the video

動機 face_recognitionを使用して得られる顔座標は長方形であり、この座標をそのまま用いてぼかし処理を行った場合得られる画像は醜い。 それに対してモ

Yoshitsugu Kesamaru 6 Feb 03, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 91 Nov 22, 2022
利用Paddle框架复现CRAFT

CRAFT-Paddle 利用Paddle框架复现CRAFT CRAFT 本项目基于paddlepaddle框架复现CRAFT,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: CRAFT: Character-Region Awarenes

QuanHao Guo 2 Mar 07, 2022
Python Computer Vision from Scratch

This repository explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both f

Milaan Parmar / Милан пармар / _米兰 帕尔马 221 Dec 26, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
Rotational region detection based on Faster-RCNN.

R2CNN_Faster_RCNN_Tensorflow Abstract This is a tensorflow re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detecti

UCAS-Det 581 Nov 22, 2022
Characterizing possible failure modes in physics-informed neural networks.

Characterizing possible failure modes in physics-informed neural networks This repository contains the PyTorch source code for the experiments in the

Aditi Krishnapriyan 55 Jan 02, 2023
Some bits of javascript to transcribe scanned pages using PageXML

nashi (nasḫī) Some bits of javascript to transcribe scanned pages using PageXML. Both ltr and rtl languages are supported. Try it! But wait, there's m

Andreas Büttner 15 Nov 09, 2022
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022