Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Overview

Head Detector

Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection module can be installed using pip in order to be able to plug-and-play with HeadHunter-T.

Requirements

  1. Nvidia Driver >= 418

  2. Cuda 10.0 and compaitible CudNN

  3. Python packages : To install the required python packages; conda env create -f head_detection.yml.

  4. Use the anaconda environment head_detection by activating it, source activate head_detection or conda activate head_detection.

  5. Alternatively pip can be used to install required packages using pip install -r requirements.txt or update your existing environment with the aforementioned yml file.

Training

  1. To train a model, define environment variable NGPU, config file and use the following command

$python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env train.py --cfg_file config/config_chuman.yaml --world_size $NGPU --num_workers 4

  1. Training is currently supported over (a) ScutHead dataset (b) CrowdHuman + ScutHead combined, (c) Our proposed CroHD dataset. This can be mentioned in the config file.

  2. To train the model, config files must be defined. More details about the config files are mentioned in the section below

Evaluation and Testing

  1. Unlike the training, testing and evaluation does not have a config file. Rather, all the parameters are set as argument variable while executing the code. Refer to the respective files, evaluate.py and test.py.
  2. evaluate.py evaluates over the validation/test set using AP, MMR, F1, MODA and MODP metrics.
  3. test.py runs the detector over a "bunch of images" in the testing set for qualitative evaluation.

Config file

A config file is necessary for all training. It's built to ease the number of arg variable passed during each execution. Each sub-sections are as elaborated below.

  1. DATASET

    1. Set the base_path as the parent directory where the dataset is situated at.
    2. Train and Valid are .txt files that contains relative path to respective images from the base_path defined above and their corresponding Ground Truth in (x_min, y_min, x_max, y_max) format. Generation files for the three datasets can be seen inside data directory. For example,
    /path/to/image.png
    x_min_1, y_min_1, x_max_1, y_max_1
    x_min_2, y_min_2, x_max_2, y_max_2
    x_min_3, y_min_3, x_max_3, y_max_3
    .
    .
    .
    
    1. mean_std are RGB means and stdev of the training dataset. If not provided, can be computed prior to the start of the training
  2. TRAINING

    1. Provide pretrained_model and corresponding start_epoch for resuming.
    2. milestones are epoch at which the learning rates are set to 0.1 * lr.
    3. only_backbone option loads just the Resnet backbone and not the head. Not applicable for mobilenet.
  3. NETWORK

    1. The mentioned parameters are as described in experiment section of the paper.
    2. When using median_anchors, the anchors have to be defined in anchors.py.
    3. We experimented with mobilenet, resnet50 and resnet150 as alternative backbones. This experiment was not reported in the paper due to space constraints. We found the accuracy to significantly decrease with mobilenet but resnet50 and resnet150 yielded an almost same performance.
    4. We also briefly experimented with Deformable Convolutions but again didn't see noticable improvements in performance. The code we used are available in this repository.

Note :

This codebase borrows a noteable portion from pytorch-vision owing to the fact some of their modules cannot be "imported" as a package.

Citation :

@InProceedings{Sundararaman_2021_CVPR,
    author    = {Sundararaman, Ramana and De Almeida Braga, Cedric and Marchand, Eric and Pettre, Julien},
    title     = {Tracking Pedestrian Heads in Dense Crowd},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {3865-3875}
}
Owner
Ramana Subramanyam
Ramana Subramanyam
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
Textboxes implementation with Tensorflow (python)

tb_tensorflow A python implementation of TextBoxes Dependencies TensorFlow r1.0 OpenCV2 Code from Chaoyue Wang 03/09/2017 Update: 1.Debugging optimize

Jayne Shin (신재인) 20 May 31, 2019
This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and flexible design and ready to be integrated right into your system!

Passport-Recogniton-System This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and fle

Mo'men Ashraf Muhamed 7 Jan 04, 2023
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
This is a implementation of CRAFT OCR method

This is a implementation of CRAFT OCR method

Esaka 0 Nov 01, 2021
Framework for the Complete Gaze Tracking Pipeline

Framework for the Complete Gaze Tracking Pipeline The figure below shows a general representation of the camera-to-screen gaze tracking pipeline [1].

Pascal 20 Jan 06, 2023
Automatically fishes for you while you are afk :)

Dank-memer-afk-script A simple and quick way to make easy money in Dank Memer! How to use Open a discord channel which has the Dank Memer bot enabled.

Pranav Doshi 9 Nov 11, 2022
Volume Control using OpenCV

Gesture-Volume-Control Volume Control using OpenCV Here i made volume control using Python and OpenCV in which we can control the volume of our laptop

Mudit Sinha 3 Oct 10, 2021
~1000 book pages + OpenCV + python = page regions identified as paragraphs, lines, images, captions, etc.

cosc428-structor I had an open-ended Computer Vision assignment to complete, and an out-of-copyright book that I wanted to turn into an ebook. Convent

Chad Oliver 45 Dec 06, 2022
graph learning code for ogb

The final code for OGB Installation Requirements: ogb=1.3.1 torch=1.7.0 torch-geometric=1.7.0 torch-scatter=2.0.6 torch-sparse=0.6.9 Baseline models T

PierreHao 20 Nov 10, 2022
Python Computer Vision from Scratch

This repository explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both f

Milaan Parmar / Милан пармар / _米兰 帕尔马 221 Dec 26, 2022
ERQA - Edge Restoration Quality Assessment

ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR, deblurring, denoising, etc) are restoring real details.

MSU Video Group 27 Dec 17, 2022
2 telegram-bots: for image recognition and for text generation

💻 📱 Telegram_Bots 🔎 & 📖 2 telegram-bots: for image recognition and for text generation. About Image recognition bot: User sends a photo and bot de

Marina Polukoshko 1 Jan 27, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Visual Behavior 86 Dec 28, 2022
ISI's Optical Character Recognition (OCR) software for machine-print and handwriting data

VistaOCR ISI's Optical Character Recognition (OCR) software for machine-print and handwriting data Publications "How to Efficiently Increase Resolutio

ISI Center for Vision, Image, Speech, and Text Analytics 21 Dec 08, 2021
scantailor - Scan Tailor is an interactive post-processing tool for scanned pages.

Scan Tailor - scantailor.org This project is no longer maintained, and has not been maintained for a while. About Scan Tailor is an interactive post-p

1.5k Dec 28, 2022
How to detect objects in real time by using Jupyter Notebook and Neural Networks , by using Yolo3

Real Time Object Recognition From your Screen Desktop . In this post, I will explain how to build a simply program to detect objects from you desktop

Ruslan Magana Vsevolodovna 2 Sep 28, 2022
The code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Long-term Action Assessment".

Likert Scoring with Grade Decoupling for Long-term Action Assessment This is the code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Lon

10 Oct 21, 2022
Image Recognition Model Generator

Takes a user-inputted query and generates a machine learning image recognition model that determines if an inputted image is or isn't their query

Christopher Oka 1 Jan 13, 2022