Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.

Overview

SynthText

Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.

Synthetic Scene-Text Image Samples Synthetic Scene-Text Samples

The code in the master branch is for Python2. Python3 is supported in the python3 branch.

The main dependencies are:

pygame, opencv (cv2), PIL (Image), numpy, matplotlib, h5py, scipy

Generating samples

python gen.py --viz [--datadir <path-to-dowloaded-renderer-data>]

where, --datadir points to the renderer_data directory included in the data torrent. Specifying this datadir is optional, and if not specified, the script will automatically download and extract the same renderer.tar.gz data file (~24 M). This data file includes:

  • sample.h5: This is a sample h5 file which contains a set of 5 images along with their depth and segmentation information. Note, this is just given as an example; you are encouraged to add more images (along with their depth and segmentation information) to this database for your own use.
  • fonts: three sample fonts (add more fonts to this folder and then update fonts/fontlist.txt with their paths).
  • newsgroup: Text-source (from the News Group dataset). This can be subsituted with any text file. Look inside text_utils.py to see how the text inside this file is used by the renderer.
  • models/colors_new.cp: Color-model (foreground/background text color model), learnt from the IIIT-5K word dataset.
  • models: Other cPickle files (char_freq.cp: frequency of each character in the text dataset; font_px2pt.cp: conversion from pt to px for various fonts: If you add a new font, make sure that the corresponding model is present in this file, if not you can add it by adapting invert_font_size.py).

This script will generate random scene-text image samples and store them in an h5 file in results/SynthText.h5. If the --viz option is specified, the generated output will be visualized as the script is being run; omit the --viz option to turn-off the visualizations. If you want to visualize the results stored in results/SynthText.h5 later, run:

python visualize_results.py

Pre-generated Dataset

A dataset with approximately 800000 synthetic scene-text images generated with this code can be found here.

Adding New Images

Segmentation and depth-maps are required to use new images as background. Sample scripts for obtaining these are available here.

  • predict_depth.m MATLAB script to regress a depth mask for a given RGB image; uses the network of Liu etal. However, more recent works (e.g., this) might give better results.
  • run_ucm.m and floodFill.py for getting segmentation masks using gPb-UCM.

For an explanation of the fields in sample.h5 (e.g.: seg,area,label), please check this comment.

Pre-processed Background Images

The 8,000 background images used in the paper, along with their segmentation and depth masks, are included in the same torrent as the pre-generated dataset under the bg_data directory. The files are:

filenames description
imnames.cp names of images which do not contain background text
bg_img.tar.gz images (filter these using imnames.cp)
depth.h5 depth maps
seg.h5 segmentation maps

Downloading without BitTorrent

Downloading with BitTorrent is strongly recommended. If that is not possible, the files are also available to download over http from https://thor.robots.ox.ac.uk/~vgg/data/scenetext/preproc/<filename>, where, <filename> can be:

filenames size md5 hash
imnames.cp 180K
bg_img.tar.gz 8.9G 3eac26af5f731792c9d95838a23b5047
depth.h5 15G af97f6e6c9651af4efb7b1ff12a5dc1b
seg.h5 6.9G 1605f6e629b2524a3902a5ea729e86b2

Note: due to large size, depth.h5 is also available for download as 3-part split-files of 5G each. These part files are named: depth.h5-00, depth.h5-01, depth.h5-02. Download using the path above, and put them together using cat depth.h5-0* > depth.h5. To download, use the something like the following:

wget --continue https://thor.robots.ox.ac.uk/~vgg/data/scenetext/preproc/<filename>

use_preproc_bg.py provides sample code for reading this data.

Note: I do not own the copyright to these images.

Generating Samples with Text in non-Latin (English) Scripts

  • @JarveeLee has modified the pipeline for generating samples with Chinese text here.
  • @adavoudi has modified it for arabic/persian script, which flows from right-to-left here.
  • @MichalBusta has adapted it for a number of languages (e.g. Bangla, Arabic, Chinese, Japanese, Korean) here.
  • @gachiemchiep has adapted for Japanese here.
  • @gungui98 has adapted for Vietnamese here.
  • @youngkyung has adapted for Korean here.
  • @kotomiDu has developed an interactive UI for generating images with text here.
  • @LaJoKoch has adapted for German here.

Further Information

Please refer to the paper for more information, or contact me (email address in the paper).

🔎 Like Chardet. 🚀 Package for encoding & language detection. Charset detection.

Charset Detection, for Everyone 👋 The Real First Universal Charset Detector A library that helps you read text from an unknown charset encoding. Moti

TAHRI Ahmed R. 332 Dec 31, 2022
CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering" official PyTorch implementation.

LED2-Net This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering". Y

Fu-En Wang 83 Jan 04, 2023
一键翻译各类图片内文字

一键翻译各类图片内文字 针对群内、各个图站上大量不太可能会有人去翻译的图片设计,让我这种日语小白能够勉强看懂图片 主要支持日语,不过也能识别汉语和小写英文 支持简单的涂白和嵌字

574 Dec 28, 2022
Python library to extract tabular data from images and scanned PDFs

Overview ExtractTable - API to extract tabular data from images and scanned PDFs The motivation is to make it easy for developers to extract tabular d

Org. Account 165 Dec 31, 2022
It is a image ocr tool using the Tesseract-OCR engine with the pytesseract package and has a GUI.

OCR-Tool It is a image ocr tool made in Python using the Tesseract-OCR engine with the pytesseract package and has a GUI. This is my second ever pytho

Khant Htet Aung 4 Jul 11, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 185 Jan 01, 2023
The official code for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates".

SpeechDrivesTemplates The official repo for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates". [arxiv

Qian Shenhan 53 Dec 23, 2022
Machine Leaning applied to denoise images to improve OCR Accuracy

Machine Learning to Denoise Images for Better OCR Accuracy This project is an adaptation of this tutorial and used only for learning purposes: https:/

Antonio Bri Pérez 2 Nov 16, 2022
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022
A dataset handling library for computer vision datasets in LOST-fromat

A dataset handling library for computer vision datasets in LOST-fromat

8 Dec 15, 2022
When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework (CVPR 2021 oral)

MTLFace This repository contains the PyTorch implementation and the dataset of the paper: When Age-Invariant Face Recognition Meets Face Age Synthesis

Hzzone 120 Jan 05, 2023
A bot that extract text from images using the Tesseract OCR.

Text from image (OCR) @ocr_text_bot A simple bot to extract text from images. Usage What do I need? A AWS key configured locally, see here. NodeJS. I

Weverton Marques 4 Aug 06, 2021
OCR powered screen-capture tool to capture information instead of images

NormCap OCR powered screen-capture tool to capture information instead of images. Links: Repo | PyPi | Releases | Changelog | FAQs Content: Quickstart

575 Dec 31, 2022
Application that instantly translates sign-language to letters.

Sign Language Translator Project Description The main purpose of project is translating sign-language to letters. In accordance with this purpose we d

3 Sep 29, 2022
Run tesseract with the tesserocr bindings with @OCR-D's interfaces

ocrd_tesserocr Crop, deskew, segment into regions / tables / lines / words, or recognize with tesserocr Introduction This package offers OCR-D complia

OCR-D 38 Oct 14, 2022
A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV.

DcoumentScanner A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV. Directly install the .exe file to inst

Harsh Vardhan Singh 1 Oct 29, 2021
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Tesseract Open Source OCR Engine (main repository)

Tesseract OCR About This package contains an OCR engine - libtesseract and a command line program - tesseract. Tesseract 4 adds a new neural net (LSTM

48.4k Jan 09, 2023
Create single line SVG illustrations from your pictures

Create single line SVG illustrations from your pictures

Javier Bórquez 686 Dec 26, 2022
Line based ATR Engine based on OCRopy

OCR Engine based on OCRopy and Kraken using python3. It is designed to both be easy to use from the command line but also be modular to be integrated

948 Dec 23, 2022