Scene text detection and recognition based on Extremal Region(ER)

Overview

Scene text recognition

A real-time scene text recognition algorithm. Our system is able to recognize text in unconstrain background.
This algorithm is based on several papers, and was implemented in C/C++.

Enviroment and dependency

  1. OpenCV 3.1 or above
  2. CMake 3.10 or above
  3. Visual Studio 2017 Community or above (Windows-only)

How to build?

Windows

  1. Install OpenCV; put the opencv directory into C:\tools
    • You can install it manually from its Github repo, or
    • You can install it via Chocolatey: choco install opencv, or
    • If you already have OpenCV, edit CMakeLists.txt and change WIN_OPENCV_CONFIG_PATH to where you have it
  2. Use CMake to generate the project files
    cd Scene-text-recognition
    mkdir build-win
    cd build-win
    cmake .. -G "Visual Studio 15 2017 Win64"
  3. Use CMake to build the project
    cmake --build . --config Release
  4. Find the binaries in the root directory
    cd ..
    dir | findstr scene
  5. To execute the scene_text_recognition.exe binary, use its wrapper script; for example:
    .\scene_text_recognition.bat -i res\ICDAR2015_test\img_6.jpg

Linux

  1. Install OpenCV; refer to OpenCV Installation in Linux
  2. Use CMake to generate the project files
    cd Scene-text-recognition
    mkdir build-linux
    cd build-linux
    cmake ..
  3. Use CMake to build the project
    cmake --build .
  4. Find the binaries in the root directory
    cd ..
    ls | grep scene
  5. To execute the binaries, run them as-is; for example:
    ./scene_text_recognition -i res/ICDAR2015_test/img_6.jpg

Usage

The executable file scene_text_recognition must ultimately exist in the project root directory (i.e., next to classifier/, dictionary/ etc.)

./scene_text_recognition -v:            take default webcam as input  
./scene_text_recognition -v [video]:    take a video as input  
./scene_text_recognition -i [image]:    take an image as input  
./scene_text_recognition -i [path]:     take folder with images as input,  
./scene_text_recognition -l [image]:    demonstrate "Linear Time MSER" Algorithm  
./scene_text_recognition -t detection:  train text detection classifier  
./scene_text_recognition -t ocr:        train text recognition(OCR) classifier 

Train your own classifier

Text detection

  1. Put your text data to res/pos, non-text data to res/neg
  2. Name your data in numerical, e.g. 1.jpg, 2.jpg, 3.jpg, and so on.
  3. Make sure training folder exist
  4. Run ./scene_text_recognition -t detection
mkdir training
./scene_text_recognition -t detection
  1. Text detection classifier will be found at training folder

Text recognition(OCR)

  1. Put your training data to res/ocr_training_data/
  2. Arrange the data in [Font Name]/[Font Type]/[Category]/[Character.jpg], for instance Time_New_Roman/Bold/lower/a.jpg. You can refer to res/ocr_training_data.zip
  3. Make sure training folder exist, and put svm-train to root folder (svm-train will be build by the system and should be found at build/)
  4. Run ./scene_text_recognition -t ocr
mkdir training
mv svm-train scene-text-recognition/
scene_text_recognition -t ocr
  1. Text recognition(OCR) classifier will be fould at training folder

How it works

The algorithm is based on an region detector called Extremal Region (ER), which is basically the superset of famous region detector MSER. We use ER to find text candidates. The ER is extracted by Linear-time MSER algorithm. The pitfall of ER is repeating detection, therefore we remove most of repeating ERs with non-maximum suppression. We estimate the overlapped between ER based on the Component tree. and calculate the stability of every ER. Among the same group of overlapped ER, only the one with maximum stability is kept. After that we apply a 2-stages Real-AdaBoost to fliter non-text region. We choose Mean-LBP as feature because it's faster compare to other features. The suviving ERs are then group together to make the result from character-level to word level, which is more instinct for human. Our next step is to apply an OCR to these detected text. The chain-code of the ER is used as feature and the classifier is trained by SVM. We also introduce several post-process such as optimal-path selection and spelling check to make the recognition result better.

overview

Notes

For text classification, the training data contains 12,000 positive samples, mostly extract from ICDAR 2003 and ICDAR 2015 dataset. the negative sample are extracted from random images with a bootstrap process. As for OCR classification, the training data is consist of purely synthetic letters, including 28 different fonts.

The system is able to detect text in real-time(30FPS) and recognize text in nearly real-time(8~15 FPS, depends on number of texts) for a 640x480 resolution image on a Intel Core i7 desktop computer. The algorithm's end-to-end text detection accuracy on ICDAR dataset 2015 is roughly 70% with fine tune, and end-to-end recognition accuracy is about 30%.

Result

Detection result on IDCAR 2015

result1 result2 result3

Recognition result on random image

result4 result5

Linear Time MSER Demo

The green pixels are so called boundry pixels, which are pushed into stacks. Each stack stand for a gray level, and pixels will be pushed according to their gary level. result4

References

  1. D. Nister and H. Stewenius, “Linear time maximally stable extremal regions,” European Conference on Computer Vision, pages 183196, 2008.
  2. L. Neumann and J. Matas, “A method for text localization and recognition in real-world images,” Asian Conference on Computer Vision, pages 770783, 2010.
  3. L. Neumann and J. Matas, “Real-time scene text localization and recognition,” Computer Vision and Pattern Recognition, pages 35383545, 2012.
  4. L. Neumann and J. Matas, “On combining multiple segmentations in scene text recognition,” International Conference on Document Analysis and Recognition, pages 523527, 2013.
  5. H. Cho, M. Sung and B. Jun, ”Canny Text Detector: Fast and robust scene text localization algorithm,” Computer Vision and Pattern Recognition, pages 35663573, 2016.
  6. B. Epshtein, E. Ofek, and Y. Wexler, “Detecting text in natural scenes with stroke width transform,” Computer Vision and Pattern Recognition, pages 29632970, 2010.
  7. P. Viola and M. J. Jones, “Rapid object detection using a boosted cascade of simple features,” Computer Vision and Pattern Recognition, pages 511518, 2001.
Owner
HSIEH, YI CHIA
HSIEH, YI CHIA
Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.

SynthText Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Ved

Ankush Gupta 1.8k Dec 28, 2022
a Deep Learning Framework for Text

DeLFT DeLFT (Deep Learning Framework for Text) is a Keras and TensorFlow framework for text processing, focusing on sequence labelling (e.g. named ent

Patrice Lopez 350 Dec 19, 2022
基于Paddle框架的PSENet复现

PSENet-Paddle 基于Paddle框架的PSENet复现 本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 AIStudio链接 参考项目: whai362-PSENet 环境配置 本项目

QuanHao Guo 4 Apr 24, 2022
Face Detection with DLIB

Face Detection with DLIB In this project, we have detected our face with dlib and opencv libraries. Setup This Project Install DLIB & OpenCV You can i

Can 2 Jan 16, 2022
list all open dataset about ocr.

ocr-open-dataset list all open dataset about ocr. printed dataset year Born-Digital Images (Web and Email) 2011-2015 COCO-Text 2017 Text Extraction fr

hongbomin 95 Nov 24, 2022
天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 - 第三名解决方案

天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 比赛链接 个人博客记录 目录结构 ├── final------------------------------------决赛方案PPT ├── preliminary_contest--------------------

19 Aug 17, 2022
TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n

zhangjing1 24 Apr 28, 2022
Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels"

Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels" Please refer to htt

Ke Sun 1 Feb 14, 2022
Hand Detection and Finger Detection on Live Feed

Hand-Detection-On-Live-Feed Hand Detection and Finger Detection on Live Feed Getting Started Install the dependencies $ git clone https://github.com/c

Chauhan Mahaveer 2 Jan 02, 2022
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
📷 Face Recognition using Haar-Cascade Classifier, OpenCV, and Python

Face-Recognition-System Face Recognition using Haar-Cascade Classifier, OpenCV and Python. This project is based on face detection and face recognitio

1 Jan 10, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
A list of hyperspectral image super-solution resources collected by Junjun Jiang

A list of hyperspectral image super-resolution resources collected by Junjun Jiang. If you find that important resources are not included, please feel free to contact me.

Junjun Jiang 301 Jan 05, 2023
a micro OCR network with 0.07mb params.

MicroOCR a micro OCR network with 0.07mb params. Layer (type) Output Shape Param # Conv2d-1 [-1, 64, 8,

william 29 Aug 06, 2022
Fun program to overlay a mask to yourself using a webcam

Superhero Mask Overlay Description Simple project made for fun. It consists of placing a mask (a PNG image with transparent background) on your face.

KB Kwan 10 Dec 01, 2022
Opencv face recognition desktop application

Opencv-Face-Recognition Opencv face recognition desktop application Program developed by Gustavo Wydler Azuaga - 2021-11-19 Screenshots of the program

Gus 1 Nov 19, 2021
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
An easy to use an (hopefully useful) captcha solution for pyTelegramBotAPI

pyTelegramBotCAPTCHA An easy to use and (hopefully useful) image CAPTCHA soltion for pyTelegramBotAPI. Installation: pip install pyTelegramBotCAPTCHA

29 Dec 26, 2022
Balabobapy - Using artificial intelligence algorithms to continue the text

Balabobapy - Using artificial intelligence algorithms to continue the text

qxtony 1 Feb 04, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022