Code for CVPR 2022 paper "SoftGroup for Instance Segmentation on 3D Point Clouds"

Overview

SoftGroup

PWC PWC Architecture

We provide code for reproducing results of the paper SoftGroup for 3D Instance Segmentation on Point Clouds (CVPR 2022)

Author: Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, and Chang D. Yoo.

Introduction

Existing state-of-the-art 3D instance segmentation methods perform semantic segmentation followed by grouping. The hard predictions are made when performing semantic segmentation such that each point is associated with a single class. However, the errors stemming from hard decision propagate into grouping that results in (1) low overlaps between the predicted instance with the ground truth and (2) substantial false positives. To address the aforementioned problems, this paper proposes a 3D instance segmentation method referred to as SoftGroup by performing bottom-up soft grouping followed by top-down refinement. SoftGroup allows each point to be associated with multiple classes to mitigate the problems stemming from semantic prediction errors and suppresses false positive instances by learning to categorize them as background. Experimental results on different datasets and multiple evaluation metrics demonstrate the efficacy of SoftGroup. Its performance surpasses the strongest prior method by a significant margin of +6.2% on the ScanNet v2 hidden test set and +6.8% on S3DIS Area 5 of AP_50.

Learderboard

Feature

  • State of the art performance on the ScanNet benchmark and S3DIS dataset (3/Mar/2022).
  • High speed of 345 ms per scan on ScanNet dataset, which is comparable with the existing fastest methods (HAIS).
  • Reproducibility code for both ScanNet and S3DIS datasets.

Installation

Please refer to installation guide.

Data Preparation

Please refer to data preparation for preparing the S3DIS and ScanNet v2 dataset.

Pretrained models

Dataset AP AP_50 AP_25 Download
S3DIS 51.4 66.5 75.4 model
ScanNet v2 46.0 67.6 78.9 model

Training

We use the checkpoint of HAIS as pretrained backbone. Download the pretrained HAIS model at here at put it in SoftGroup/ directory.

Training S3DIS dataset

First, finetune the pretrained HAIS point-wise prediction network (backbone) on S3DIS.

python train.py --config config/softgroup_fold5_backbone_s3dis.yaml

Then, train model from frozen backbone.

python train.py --config config/softgroup_fold5_default_s3dis.yaml

Training ScanNet V2 dataset

Training on ScanNet doesnot require finetuning the backbone. Just freeze pretrained backbone and train the model.

python train.py --config config/softgroup_default_scannet.yaml

Inference

Testing for S3DIS dataset.

CUDA_VISIBLE_DEVICES=0 python test_s3dis.py --config config/softgroup_fold5_phase2_s3dis.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$

Testing for ScanNet V2 dataset.

CUDA_VISIBLE_DEVICES=0 python test.py --config config/softgroup_default_scannet.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$

Visualization

We provide visualization tools based on Open3D (tested on Open3D 0.8.0).

pip install open3D==0.8.0
python visualize_open3d.py --data_path {} --prediction_path {} --data_split {} --room_name {} --task {}

Please refer to visualize_open3d.py for more details.

Citation

If you find our work helpful for your research. Please consider citing our paper.

@inproceedings{vu2022softgroup,
  title={SoftGroup for 3D Instance Segmentation on 3D Point Clouds},
  author={Vu, Thang and Kim, Kookhoi and Luu, Tung M. and Nguyen, Xuan Thanh and Yoo, Chang D.},
  booktitle={CVPR},
  year={2022}
}
Owner
Thang Vu
My research involves in Deep Learning for Computer Vision (image enhancement, object detection, segmentation) and other AI related fields.
Thang Vu
Handwriting Recognition System based on a deep Convolutional Recurrent Neural Network architecture

Handwriting Recognition System This repository is the Tensorflow implementation of the Handwriting Recognition System described in Handwriting Recogni

Edgard Chammas 346 Jan 07, 2023
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
One Metrics Library to Rule Them All!

onemetric Installation Install onemetric from PyPI (recommended): pip install onemetric Install onemetric from the GitHub source: git clone https://gi

Piotr Skalski 49 Jan 03, 2023
Demo processor to illustrate OCR-D Python API

ocrd_vandalize/ Demo processor to illustrate the OCR-D/core Python API Description :TODO: write docs :) Installation From PyPI pip3 install ocrd_vanda

Konstantin Baierer 5 May 05, 2022
Sort By Face

Sort-By-Face This is an application with which you can either sort all the pictures by faces from a corpus of photos or retrieve all your photos from

0 Nov 29, 2021
Text page dewarping using a "cubic sheet" model

page_dewarp Page dewarping and thresholding using a "cubic sheet" model - see full writeup at https://mzucker.github.io/2016/08/15/page-dewarping.html

Matt Zucker 1.2k Dec 29, 2022
A selectional auto-encoder approach for document image binarization

The code of this repository was used for the following publication. If you find this code useful please cite our paper: @article{Gallego2019, title =

Javier Gallego 89 Nov 18, 2022
Using python libraries to track hands

Python-HandTracking Using python libraries to track hands on a camera Uses cv2 and mediapipe libraries custom hand tracking module PyCharm IDE Final E

Martin Matsudaira 1 Dec 17, 2021
A dataset handling library for computer vision datasets in LOST-fromat

A dataset handling library for computer vision datasets in LOST-fromat

8 Dec 15, 2022
This project is basically to draw lines with your hand, using python, opencv, mediapipe.

Paint Opencv 📷 This project is basically to draw lines with your hand, using python, opencv, mediapipe. Screenshoots 📱 Tools ⚙️ Python Opencv Mediap

Williams Ismael Bobadilla Torres 3 Nov 17, 2021
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.

LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which

162 Jan 05, 2023
Geometric Augmentation for Text Image

Text Image Augmentation A general geometric augmentation tool for text images in the CVPR 2020 paper "Learn to Augment: Joint Data Augmentation and Ne

Canjie Luo 440 Jan 05, 2023
An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports.

Optical_Character_Recognition An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports. As an IOT/Compute

Ramsis Hammadi 1 Feb 12, 2022
Convolutional Recurrent Neural Network (CRNN) for image-based sequence recognition.

Convolutional Recurrent Neural Network This software implements the Convolutional Recurrent Neural Network (CRNN), a combination of CNN, RNN and CTC l

Baoguang Shi 2k Dec 31, 2022
Ddddocr - 通用验证码识别OCR pypi版

带带弟弟OCR通用验证码识别SDK免费开源版 今天ddddocr又更新啦! 当前版本为1.3.1 想必很多做验证码的新手,一定头疼碰到点选类型的图像,做样本费时

Sml2h3 4.4k Dec 31, 2022
virtual mouse which can copy files, close tabs and many other features !

AI Virtual Mouse Controller Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip loca

Diwas Pandey 23 Oct 05, 2021
The virtual calculator will be above the live streaming from your camera

The virtual calculator is above the live streaming from my camera usb , the program first detect my hand and in each frame calculate the distance between two finger ,if the distance is lower than the

gasbaoui mohammed al amine 5 Jul 01, 2022
Python library to extract tabular data from images and scanned PDFs

Overview ExtractTable - API to extract tabular data from images and scanned PDFs The motivation is to make it easy for developers to extract tabular d

Org. Account 165 Dec 31, 2022
Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.

SynthText Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Ved

Ankush Gupta 1.8k Dec 28, 2022
Document manipulation detection with python

image manipulation detection task: -- tianchi function image segmentation salie

JiaKui Hu 3 Aug 22, 2022