基于Paddle框架的PSENet复现

Overview

PSENet-Paddle

基于Paddle框架的PSENet复现

本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待

AIStudio链接

参考项目:

whai362-PSENet

环境配置

本项目利用AIstudio平台,采用paddlepaddle: 2.0.2-gpu Version,除此之外你需要通过pip install mmcv editdistance Polygon3 pyclipper或者pip install -r requirement.txt来安装依赖包

数据集

本项目已搭载PSENet比赛指定数据集,你可以在此找到搭载的数据集,包含ICDAR2015 Task4以及Total-Text

工程目录

注意到你需要将submitPSENet重命名为PSENet

/home/aistudio/PSENet
|───data(解压的data.zip)
└───config
└───models
└───dataset
└───eval
└───utils
└───compile.sh
└───__init__.py
└───test.py
└───train.py
└───requirement.txt
└───logo.gif

项目配置**

注意:由于aistudio的docker环境并不适配本项目的编译,所以你需要在本地计算机编译完成后上传编译文件,在本地计算机我才用如下配置,你可以使用gcc --versiong++ --version查看配置

AIStudio Local PC
gcc (Ubuntu 7.5.0-3ubuntu1~16.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
g++ (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
g++ (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

可以发现AIStudio的g++版本不适配,注意:你需要相同的架构,系统以及python版本,(Ubuntu)linux-x86_64&python3.7

`./compile.sh` or `bash compile.sh` if come out bash: ./compile.sh: Permission denied

或者直接进入指定目录,手动编译

cd /home/aistudio/PSENet/models/post_processing/pse
python setup.py build_ext --inplace

编译完成后你会在/home/aistudio/PSENet/models/post_processing/pse得到build/temp.linux-x86_64-3.7/pse.o文件和pse.cpython-37m-x86_64-linux-gnu.so文件

注意:本项目已经全部配置完成,这一步无需操作

训练

需要注意的是,在paddlepaddle-2.0.2中并不支持字典数据读取,因此我在/home/aistudio/PSENet/utils/data_loader.py利用迭代器重写了DataLoader这拉慢了数据读取的速度,会导致训练速度略慢,例如在使用psenet_r50_ic15_1024_finetune.py训练一个epoch需要512.4秒,另外paddlepaddle2.0.2暂不支持Identity方法,因此我在/home/aistudio/PSENet/models/utils/fuse_conv_bn.py通过继承Paddle.nn.Layer写了Identity

cd /home/aistudio/PSENet/
python train.py ${CONFIG_FILE}

例如:

cd /home/aistudio/PSENet/
python train.py config/psenet/psenet_r50_ic15_736.py

训练开启时,会生成一个类似/home/aistudio/PSENet/checkpoints/psenet_r50_ic15_1024_finetune的文件夹,里面将保存权重和优化器参数

测试

cd /home/aistudio/PSENet/
python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}

例如:

cd /home/aistudio/PSENet/
python test.py config/psenet/psenet_r50_ic15_736.py PSENet/PretrainedModel/checkpoint_ic15_736.pdparams

评估

你需要注意的是:测试和评估是递进的,通过测试生成文件后,进行评估

ICDAR 2015

cd /home/aistudio/PSENet/eval
`./eval_ic15.sh` or `bash ./eval_ic15.sh`

你会得到如下类似信息:

Calculated!{"precision": 0.8620689655172413, "recall": 0.7944150216658642, "hmean": 0.826860435980957, "AP": 0}

以下是paddlepaddle预训练模型测试指标

Method Backbone Fine-tuning Scale Config Precision (%) Recall (%) F-measure (%) Model
PSENet ResNet50 N Shorter Side: 736 psenet_r50_ic15_736.py 83.6 74.0 78.5 checkpoint_ic15_736
PSENet ResNet50 N Shorter Side: 1024 psenet_r50_ic15_1024.py 84.4 76.3 80.2 checkpoint_ic15_1024
PSENet ResNet50 Y Shorter Side: 736 psenet_r50_ic15_736_finetune.py 85.3 76.8 80.9 checkpoint_ic15_736_finetune
PSENet ResNet50 Y Shorter Side: 1024 psenet_r50_ic15_1024_finetune.py 86.2 79.4 82.7 checkpoint_ic15_1024_finetune

Total-Text

Text detection

cd /home/aistudio/PSENet/eval
./eval_tt.sh or `bash ./eval_tt.sh`

你会得到如下类似信息:

Precision:_0.8727937336814604_______/Recall:_0.7786751361161512/Hmean:_0.8230524859472805

pb

以下是paddlepaddle预训练模型测试指标

Method Backbone Fine-tuning Config Precision (%) Recall (%) F-measure (%) Model
PSENet ResNet50 N psenet_r50_tt.py 87.3 77.9 82.3 checkpoint_tt
PSENet ResNet50 Y psenet_r50_tt_finetune.py 89.3 79.6 84.2 checkpoint_tt_finetune

速度测试

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --report_speed

例如:

cd /home/aistudio/PSENet/
python test.py config/psenet/psenet_r50_ic15_736.py PSENet/PretrainedModel/checkpoint_ic15_736.pdparams --report_speed

你会得到如下类似信息

Testing 283/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8
Testing 284/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8
Testing 285/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8
Testing 286/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8

Citation

@inproceedings{wang2019shape,
  title={Shape robust text detection with progressive scale expansion network},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9336--9345},
  year={2019}
}
Owner
QuanHao Guo
master at UESTC
QuanHao Guo
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 47k Jan 07, 2023
python ocr using tesseract/ with EAST opencv detector

pytextractor python ocr using tesseract/ with EAST opencv text detector Uses the EAST opencv detector defined here with pytesseract to extract text(de

Danny Crasto 38 Dec 05, 2022
Hiiii this is the Spanish for Linux and win 10 and in the near future the english version of PortScan my new tool on which you can see what ports are Open only with the IP adress.

PortScanner-by-IIT PortScanner es una herramienta programada en Python3. Como su nombre indica esta herramienta escanea los primeros 150 puertos de re

5 Sep 19, 2022
Camera Intrinsic Calibration and Hand-Eye Calibration in Pybullet

This repository is mainly for camera intrinsic calibration and hand-eye calibration. Synthetic experiments are conducted in PyBullet simulator. 1. Tes

CAI Junhao 7 Oct 03, 2022
Autonomous Driving project for Euro Truck Simulator 2

hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag

Umut Görkem Kocabaş 36 Nov 06, 2022
A novel region proposal network for more general object detection ( including scene text detection ).

DeRPN: Taking a further step toward more general object detection DeRPN is a novel region proposal network which concentrates on improving the adaptiv

Deep Learning and Vision Computing Lab, SCUT 151 Dec 12, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval (arXiv) Repository to contain the code, models, data for end-to-end

225 Dec 25, 2022
Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:

RaVAEn The RaVÆn system We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variationa

SpaceML 35 Jan 05, 2023
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched

OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf # it's a scriptable c

jbarlow83 7.9k Jan 03, 2023
Corner-based Region Proposal Network

Corner-based Region Proposal Network CRPN is a two-stage detection framework for multi-oriented scene text. It employs corners to estimate the possibl

xhzdeng 140 Nov 04, 2022
Ocular is a state-of-the-art historical OCR system.

Ocular Ocular is a state-of-the-art historical OCR system. Its primary features are: Unsupervised learning of unknown fonts: requires only document im

228 Dec 30, 2022
The virtual calculator will be above the live streaming from your camera

The virtual calculator is above the live streaming from my camera usb , the program first detect my hand and in each frame calculate the distance between two finger ,if the distance is lower than the

gasbaoui mohammed al amine 5 Jul 01, 2022
An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports.

Optical_Character_Recognition An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports. As an IOT/Compute

Ramsis Hammadi 1 Feb 12, 2022
The CIS OCR PostCorrectionTool

The CIS OCR Post Correction Tool PoCoTo Source code for the Java-based PoCoTo client enabling fast interactive batch corrections of complete OCR error

CIS OCR Group 36 Dec 15, 2022
This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

pdf-scraper-with-ocr With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't imp

Jacobo José Guijarro Villalba 75 Oct 21, 2022
Memory tests solver with using OpenCV

Human Benchmark project This project is OpenCV based programs which are puzzle solvers for 7 different games for https://humanbenchmark.com/. made as

Bahadır Araz 24 Dec 27, 2022
✌️Using this you can control your PC/Laptop volume by Hand Gestures created with Python.

Hand Gesture Volume Controller ✋ Hand recognition 👆 Finger recognition 🔊 you can decrease and increase volume Demo Code Firstly I have created a Mod

Abbas Ataei 19 Nov 17, 2022
Regions sanitàries (RS), Sectors Sanitàris (SS) i Àrees Bàsiques de Salut (ABS) de Catalunya

Regions sanitàries (RS), Sectors Sanitaris (SS), Àrees de Gestió Assistencial (AGA) i Àrees Bàsiques de Salut (ABS) de Catalunya Fitxers GeoJSON de le

Glòria Macià Muñoz 2 Jan 23, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Abdulazeez Jimoh 1 Jan 01, 2022