基于Paddle框架的PSENet复现

Overview

PSENet-Paddle

基于Paddle框架的PSENet复现

本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待

AIStudio链接

参考项目:

whai362-PSENet

环境配置

本项目利用AIstudio平台,采用paddlepaddle: 2.0.2-gpu Version,除此之外你需要通过pip install mmcv editdistance Polygon3 pyclipper或者pip install -r requirement.txt来安装依赖包

数据集

本项目已搭载PSENet比赛指定数据集,你可以在此找到搭载的数据集,包含ICDAR2015 Task4以及Total-Text

工程目录

注意到你需要将submitPSENet重命名为PSENet

/home/aistudio/PSENet
|───data(解压的data.zip)
└───config
└───models
└───dataset
└───eval
└───utils
└───compile.sh
└───__init__.py
└───test.py
└───train.py
└───requirement.txt
└───logo.gif

项目配置**

注意:由于aistudio的docker环境并不适配本项目的编译,所以你需要在本地计算机编译完成后上传编译文件,在本地计算机我才用如下配置,你可以使用gcc --versiong++ --version查看配置

AIStudio Local PC
gcc (Ubuntu 7.5.0-3ubuntu1~16.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
g++ (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
g++ (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

可以发现AIStudio的g++版本不适配,注意:你需要相同的架构,系统以及python版本,(Ubuntu)linux-x86_64&python3.7

`./compile.sh` or `bash compile.sh` if come out bash: ./compile.sh: Permission denied

或者直接进入指定目录,手动编译

cd /home/aistudio/PSENet/models/post_processing/pse
python setup.py build_ext --inplace

编译完成后你会在/home/aistudio/PSENet/models/post_processing/pse得到build/temp.linux-x86_64-3.7/pse.o文件和pse.cpython-37m-x86_64-linux-gnu.so文件

注意:本项目已经全部配置完成,这一步无需操作

训练

需要注意的是,在paddlepaddle-2.0.2中并不支持字典数据读取,因此我在/home/aistudio/PSENet/utils/data_loader.py利用迭代器重写了DataLoader这拉慢了数据读取的速度,会导致训练速度略慢,例如在使用psenet_r50_ic15_1024_finetune.py训练一个epoch需要512.4秒,另外paddlepaddle2.0.2暂不支持Identity方法,因此我在/home/aistudio/PSENet/models/utils/fuse_conv_bn.py通过继承Paddle.nn.Layer写了Identity

cd /home/aistudio/PSENet/
python train.py ${CONFIG_FILE}

例如:

cd /home/aistudio/PSENet/
python train.py config/psenet/psenet_r50_ic15_736.py

训练开启时,会生成一个类似/home/aistudio/PSENet/checkpoints/psenet_r50_ic15_1024_finetune的文件夹,里面将保存权重和优化器参数

测试

cd /home/aistudio/PSENet/
python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}

例如:

cd /home/aistudio/PSENet/
python test.py config/psenet/psenet_r50_ic15_736.py PSENet/PretrainedModel/checkpoint_ic15_736.pdparams

评估

你需要注意的是:测试和评估是递进的,通过测试生成文件后,进行评估

ICDAR 2015

cd /home/aistudio/PSENet/eval
`./eval_ic15.sh` or `bash ./eval_ic15.sh`

你会得到如下类似信息:

Calculated!{"precision": 0.8620689655172413, "recall": 0.7944150216658642, "hmean": 0.826860435980957, "AP": 0}

以下是paddlepaddle预训练模型测试指标

Method Backbone Fine-tuning Scale Config Precision (%) Recall (%) F-measure (%) Model
PSENet ResNet50 N Shorter Side: 736 psenet_r50_ic15_736.py 83.6 74.0 78.5 checkpoint_ic15_736
PSENet ResNet50 N Shorter Side: 1024 psenet_r50_ic15_1024.py 84.4 76.3 80.2 checkpoint_ic15_1024
PSENet ResNet50 Y Shorter Side: 736 psenet_r50_ic15_736_finetune.py 85.3 76.8 80.9 checkpoint_ic15_736_finetune
PSENet ResNet50 Y Shorter Side: 1024 psenet_r50_ic15_1024_finetune.py 86.2 79.4 82.7 checkpoint_ic15_1024_finetune

Total-Text

Text detection

cd /home/aistudio/PSENet/eval
./eval_tt.sh or `bash ./eval_tt.sh`

你会得到如下类似信息:

Precision:_0.8727937336814604_______/Recall:_0.7786751361161512/Hmean:_0.8230524859472805

pb

以下是paddlepaddle预训练模型测试指标

Method Backbone Fine-tuning Config Precision (%) Recall (%) F-measure (%) Model
PSENet ResNet50 N psenet_r50_tt.py 87.3 77.9 82.3 checkpoint_tt
PSENet ResNet50 Y psenet_r50_tt_finetune.py 89.3 79.6 84.2 checkpoint_tt_finetune

速度测试

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --report_speed

例如:

cd /home/aistudio/PSENet/
python test.py config/psenet/psenet_r50_ic15_736.py PSENet/PretrainedModel/checkpoint_ic15_736.pdparams --report_speed

你会得到如下类似信息

Testing 283/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8
Testing 284/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8
Testing 285/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8
Testing 286/3000
backbone_time: 0.0152
neck_time: 0.0029
det_head_time: 0.0005
det_pse_time: 0.0660
FPS: 11.8

Citation

@inproceedings{wang2019shape,
  title={Shape robust text detection with progressive scale expansion network},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9336--9345},
  year={2019}
}
Owner
QuanHao Guo
master at UESTC
QuanHao Guo
Crop regions in napari manually

napari-crop Crop regions in napari manually Usage Create a new shapes layer to annotate the region you would like to crop: Use the rectangle tool to a

Robert Haase 4 Sep 29, 2022
An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Oriented Scene Text Detection

InceptText-Tensorflow An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Orien

GeorgeJoe 115 Dec 12, 2022
https://arxiv.org/abs/1904.01941

Character-Region-Awareness-for-Text-Detection- https://arxiv.org/abs/1904.01941 Train You can train SynthText data use python source/train_SynthText.p

DayDayUp 120 Dec 28, 2022
Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that slide and lock together.

Fusion-360-Add-In-PuzzleSpline Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that sli

Michiel van Wessem 1 Nov 15, 2021
A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

1 Dec 22, 2021
Code for the paper "DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks" (ICCV '19)

DewarpNet This repository contains the codes for DewarpNet training. Recent Updates [May, 2020] Added evaluation images and an important note about Ma

<a href=[email protected]"> 354 Jan 01, 2023
YOLOv5 in DOTA with CSL_label.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)

YOLOv5_DOTA_OBB YOLOv5 in DOTA_OBB dataset with CSL_label.(Oriented Object Detection) Datasets and pretrained checkpoint Datasets : DOTA Pretrained Ch

1.1k Dec 30, 2022
The code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Long-term Action Assessment".

Likert Scoring with Grade Decoupling for Long-term Action Assessment This is the code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Lon

10 Oct 21, 2022
This is a pytorch re-implementation of EAST: An Efficient and Accurate Scene Text Detector.

EAST: An Efficient and Accurate Scene Text Detector Description: This version will be updated soon, please pay attention to this work. The motivation

Dejia Song 544 Dec 20, 2022
This is a real life mario project using python and mediapipe

real-life-mario This is a real life mario project using python and mediapipe How to run to run this just run - realMario.py file requirements This req

Programminghut 42 Dec 22, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 04, 2023
scantailor - Scan Tailor is an interactive post-processing tool for scanned pages.

Scan Tailor - scantailor.org This project is no longer maintained, and has not been maintained for a while. About Scan Tailor is an interactive post-p

1.5k Dec 28, 2022
2 telegram-bots: for image recognition and for text generation

💻 📱 Telegram_Bots 🔎 & 📖 2 telegram-bots: for image recognition and for text generation. About Image recognition bot: User sends a photo and bot de

Marina Polukoshko 1 Jan 27, 2022
Official code for ROCA: Robust CAD Model Retrieval and Alignment from a Single Image (CVPR 2022)

ROCA: Robust CAD Model Alignment and Retrieval from a Single Image (CVPR 2022) Code release of our paper ROCA. Check out our video, paper, and website

123 Dec 25, 2022
A Python wrapper for the tesseract-ocr API

tesserocr A simple, Pillow-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR). tesserocr integrates directly with

Fayez 1.7k Dec 31, 2022
A fastai/PyTorch package for unpaired image-to-image translation.

Unpaired image-to-image translation A fastai/PyTorch package for unpaired image-to-image translation currently with CycleGAN implementation. This is a

Tanishq Abraham 120 Dec 02, 2022

Installations for running keras-theano on GPU Upgrade pip and install opencv2 cd ~ pip install --upgrade pip pip install opencv-python Upgrade keras

Berat Kurar Barakat 14 Sep 30, 2022
CRAFT-Pyotorch:Character Region Awareness for Text Detection Reimplementation for Pytorch

CRAFT-Reimplementation Note:If you have any problems, please comment. Or you can join us weChat group. The QR code will update in issues #49 . Reimple

453 Dec 28, 2022
virtual mouse which can copy files, close tabs and many other features !

AI Virtual Mouse Controller Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip loca

Diwas Pandey 23 Oct 05, 2021
Machine Leaning applied to denoise images to improve OCR Accuracy

Machine Learning to Denoise Images for Better OCR Accuracy This project is an adaptation of this tutorial and used only for learning purposes: https:/

Antonio Bri Pérez 2 Nov 16, 2022