Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

Overview

JIGSAW: An unstructured mesh generator

JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulations and polyhedral decompositions of general planar, surface and volumetric domains. JIGSAW includes refinement-based algorithms for the construction of new meshes, optimisation-driven techniques for the improvement of existing grids, as well as routines to assemble (restricted) Delaunay tessellations, Voronoi complexes and Power diagrams.

This package provides a Python based scripting interface to the underlying JIGSAW mesh generator, including a range of additional facilities for file I/O, mesh visualisation and post-processing operations.

JIGSAW has been compiled and tested on various 64-bit Linux , Windows and Mac based platforms.

Quickstart

Ensure you have a c++ compiler and the cmake utility installed.
Clone/download + unpack this repository.
python3 setup.py build_external
python3 setup.py install
python3 example.py --IDnumber=0

Note: installation of JIGSAW requires a c++ compiler and the cmake utility. JIGSAW may also be installed as a conda package. See here for details.

Function Listing

See jigsawpy for a description of the various functions available.

setup.py    - compile and install JIGSAW's c++ backend using cmake.
example.py  - a list of demo programs. 

jigsaw.py   - cmd-line interface to JIGSAW's backend
libsaw.py   - api-lib. interface to JIGSAW's backend

loadmsh.py  - load *.msh files.
savemsh.py  - save *.msh files.
loadjig.py  - load *.jig files.
savejig.py  - save *.jig files.

project.py  - apply cartographic projection operators to mesh obj.

bisect.py   - refine a mesh obj. via bisection.
extrude.py  - create a mesh obj. via extrusion.

Example Problems

The following set of example problems are available in example.py:

example: 0; # simple 2-dim. examples to get started
example: 1; # simple 3-dim. examples to get started
example: 2; # frontal-delaunay methods in the plane
example: 3; # frontal-delaunay methods for surfaces
example: 4; # frontal-delaunay methods for volumes
example: 5; # user-defined mesh-spacing constraints
example: 6; # dealing with sharp-features in piecewise smooth domains
example: 7; # dealing with sharp-features in piecewise smooth domains
example: 8; # (re)mesh marching-cubes style outputs
example: 9; # creating prismatic volumes via extrusion

Run python3 example.py --IDnumber=N to call the N-th example. *.vtk output is saved to ../cache and can be visualised with, for example, Paraview.

License

This program may be freely redistributed under the condition that the copyright notices (including this entire header) are not removed, and no compensation is received through use of the software. Private, research, and institutional use is free. You may distribute modified versions of this code UNDER THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT WITH THE AUTHOR. (If you are not directly supplying this code to a customer, and you are instead telling them how they can obtain it for free, then you are not required to make any arrangement with me.)

DISCLAIMER: Neither I nor: Columbia University, the Massachusetts Institute of Technology, the University of Sydney, nor the National Aeronautics and Space Administration warrant this code in any way whatsoever. This code is provided "as-is" to be used at your own risk.

References

There are a number of publications that describe the algorithms used in JIGSAW in detail. If you make use of JIGSAW in your work, please consider including a reference to the following:

[1] - Darren Engwirda: Generalised primal-dual grids for unstructured co-volume schemes, J. Comp. Phys., 375, pp. 155-176, https://doi.org/10.1016/j.jcp.2018.07.025, 2018.

[2] - Darren Engwirda, Conforming Restricted Delaunay Mesh Generation for Piecewise Smooth Complexes, Procedia Engineering, 163, pp. 84-96, https://doi.org/10.1016/j.proeng.2016.11.024, 2016.

[3] - Darren Engwirda, Voronoi-based Point-placement for Three-dimensional Delaunay-refinement, Procedia Engineering, 124, pp. 330-342, http://dx.doi.org/10.1016/j.proeng.2015.10.143, 2015.

[4] - Darren Engwirda, David Ivers, Off-centre Steiner points for Delaunay-refinement on curved surfaces, Computer-Aided Design, 72, pp. 157-171, http://dx.doi.org/10.1016/j.cad.2015.10.007, 2016.

[5] - Darren Engwirda, Locally-optimal Delaunay-refinement and optimisation-based mesh generation, Ph.D. Thesis, School of Mathematics and Statistics, The University of Sydney, http://hdl.handle.net/2123/13148, 2014.

Comments
  • pathlib requirement

    pathlib requirement

    pathlib is listed as a requirement for all python versions, but it is part of the system in python >=3.4 (i.e. all currently supported version of python). Because of this dependency, pip check fails when jigsawpy is installed for python 3.x. I would request that it either be removed as a dependency in the next release or that it be constrained to python versions before 3.4.

    https://docs.python.org/3/library/pathlib.html

    enhancement 
    opened by xylar 9
  • The python package includes the `tests` directory

    The python package includes the `tests` directory

    Because of the line: https://github.com/dengwirda/jigsaw-python/blob/b6e455c22696568f90a7428a49e03c980892c923/setup.py#L135 the tests directory is being included in the conda-forge (and presumably the pypi) package. This directory should be excluded, or better yet only jigsawpy should be included:

    packages=find_packages(include=['jigsawypy', 'jigsawpy.*'])
    
    for-next-release 
    opened by xylar 5
  • Add call to find_library

    Add call to find_library

    This helps Windows find jigsaw.dll without a full path name.

    A similar call seems not to be needed for Linux and not to work for OSX.

    I created a patch identical to this in the conda-forge recipe: https://github.com/conda-forge/staged-recipes/pull/10842/commits/b8d1bc4d9cffadf1c8ca62069d5f6e676cc271e4

    opened by xylar 1
  • Update to jigsaw-0.9.15.x

    Update to jigsaw-0.9.15.x

    • Update to jigsaw-0.9.15.x.
    • Fix an i/o bug in handling of jig_t objects.
    • Fix an array-size bug in orthoball routines.
    • Add support for "jumbled" meshes.
    • Remove pathlib from REQUIRED in setup.py.
    • Support ellipsoidal-type initial conditions.
    • BREAKING: encode h(x) values as 32-bit floating point data to support "very-large" h(x) types.
    opened by dengwirda 0
  • Accelerating rDT mesh and optm iter.

    Accelerating rDT mesh and optm iter.

    Hello, I was wondering if there is any way to speed up the rDT mesh and Mesh optm parts of the jigsaw-python subtree source. Currently, I am compiling with gcc-11, using the standard CMake approach (maybe there's an optimization switch I haven't enabled?). I tried compiling it with intel 2018 and 2019 but I wasn't successful with the compilation. Any ideas on achieving some speed-ups will be greatly appreciated. Thanks, -J.

    opened by jreniel 0
  • Consider using specific exceptions rather than generic `Exception`

    Consider using specific exceptions rather than generic `Exception`

    I don't find the exceptions raised by jigsawpy to be very intuitive, and I think that might be true for most python users.

    As an example: https://github.com/dengwirda/jigsaw-python/blob/f87571945975b4882d8c27bdfff9275f6e46baa8/jigsawpy/savemsh.py#L613

    I would expect something like:

        if (not isinstance(name, str)):
            raise TypeError("Argument 'name' to savemsh should be of type str")
    

    As I understand it, the generic Exception class is only intended as a base class for exceptions and shouldn't be used directly.

    Python is case sensitive so the use of NAME here also led to some confusion for me.

    for-next-release 
    opened by xylar 6
  • Still getting output to the terminal with `opts.verbosity = -1`

    Still getting output to the terminal with `opts.verbosity = -1`

    I was told that opts.verbosity = -1 should mean that no output went to the terminal window, just to the log file. But I am finding that I still get terminal output when I have this option set. I verified that the .jig file does, indeed have:

      VERBOSITY=-1
    

    but I still see something like this to the terminal:

    #------------------------------------------------------------
    #
    #   ,o, ,o,       /                                 
    #    `   `  e88~88e  d88~\   /~~~8e Y88b    e    / 
    #   888 888 88   88 C888         88b Y88b  d8b  /   
    #   888 888 "8b_d8"  Y88b   e88~-888  Y888/Y88b/  
    #   888 888  /        888D C88   888   Y8/  Y8/     
    #   88P 888 Cb      \_88P   "8b_-888    Y    Y    
    # \_8"       Y8""8D                             
    #
    #------------------------------------------------------------
    # JIGSAW: an unstructured mesh generation library.  
    #------------------------------------------------------------
    ...
    
    bug for-next-release 
    opened by xylar 2
  • Cannot create an icosahedral mesh without providing a mesh argument

    Cannot create an icosahedral mesh without providing a mesh argument

    It seems the intention is that one can create an icosahedral mesh without passing a mesh object: https://github.com/dengwirda/jigsaw-python/blob/b6e455c22696568f90a7428a49e03c980892c923/jigsawpy/init.py#L105 but when I try this:

            jigsawpy.cmd.icosahedron(opts, subdivisions)
    

    I get:

    Traceback (most recent call last):
      File "/home/xylar/miniconda3/envs/compass_jigsaw_mesh/bin/compass", line 33, in <module>
        sys.exit(load_entry_point('compass', 'console_scripts', 'compass')())
      File "/home/xylar/code/compass/separate_mesh_steps/compass/__main__.py", line 63, in main
        commands[args.command]()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/run/serial.py", line 281, in main
        run_step()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/run/serial.py", line 249, in run_step
        test_case.run()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/ocean/tests/global_ocean/mesh/__init__.py", line 109, in run
        super().run()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/testcase.py", line 190, in run
        self._run_step(step, self.new_step_log_file)
      File "/home/xylar/code/compass/separate_mesh_steps/compass/testcase.py", line 306, in _run_step
        step.run()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/mesh/spherical.py", line 350, in run
        self.make_jigsaw_mesh(subdivisions)
      File "/home/xylar/code/compass/separate_mesh_steps/compass/mesh/spherical.py", line 376, in make_jigsaw_mesh
        jigsawpy.cmd.icosahedron(opts, subdivisions)
      File "/home/xylar/miniconda3/envs/compass_jigsaw_mesh/lib/python3.9/site-packages/jigsawpy/__init__.py", line 106, in icosahedron
        return jigsaw.icosahedron(
      File "/home/xylar/miniconda3/envs/compass_jigsaw_mesh/lib/python3.9/site-packages/jigsawpy/jigsaw.py", line 597, in icosahedron
        raise Exception("Incorrect type: MESH.")
    Exception: Incorrect type: MESH.
    

    It seems that this check: https://github.com/dengwirda/jigsaw-python/blob/b6e455c22696568f90a7428a49e03c980892c923/jigsawpy/jigsaw.py#L519-L520 should check for None:

        if (mesh is not None and not isinstance(mesh, jigsaw_msh_t)):
            raise Exception("Incorrect type: MESH.")
    
    bug for-next-release 
    opened by xylar 2
  • pip, setup, build_external, etc

    pip, setup, build_external, etc

    Are the method(s) used to install binaries sufficient? Currently, two options are supported:

    1. setup.py build_external, etc builds and installs the jigsaw-cpp binaries within jigsawpy itself.
    2. If no local binaries are found, a global search of the machine path is done to pick them up in, e.g. usr/local/bin, etc --- used by the conda-based workflow.

    @jreniel has suggested installing to the python environment directory, either as a 3rd option, or, perhaps(?) a replacement for 1.

    Should also work out what's needed to make jigsawpy available for direct install via pip.

    enhancement 
    opened by dengwirda 6
Releases(v0.3.3)
Owner
Darren Engwirda
Computational scientist at LANL --- climate modelling, unstructured grids, numerical methods.
Darren Engwirda
A fastai/PyTorch package for unpaired image-to-image translation.

Unpaired image-to-image translation A fastai/PyTorch package for unpaired image-to-image translation currently with CycleGAN implementation. This is a

Tanishq Abraham 120 Dec 02, 2022
APS 6º Semestre - UNIP (2021)

UNIP - Universidade Paulista Ciência da Computação (CC) DESENVOLVIMENTO DE UM SISTEMA COMPUTACIONAL PARA ANÁLISE E CLASSIFICAÇÃO DE FORMAS Link do git

Eduardo Talarico 5 Mar 09, 2022
This pyhton script converts a pdf to Image then using tesseract as OCR engine converts Image to Text

Script_Convertir_PDF_IMG_TXT Este script de pyhton convierte un pdf en Imagen luego utilizando tesseract como motor OCR convierte la Imagen a Texto. p

alebogado 1 Jan 27, 2022
Resizing Canny Countour In Python

Resizing_Canny_Countour Install Visual Studio Code , https://code.visualstudio.com/download Select Python and install with terminal( pip install openc

Walter Ng 1 Nov 07, 2021
This tool will help you convert your text to handwriting xD

So your teacher asked you to upload written assignments? Hate writing assigments? This tool will help you convert your text to handwriting xD

Saurabh Daware 4.2k Jan 07, 2023
Table recognition inside douments using neural networks

TableTrainNet A simple project for training and testing table recognition in documents. This project was developed to make a neural network which reco

Giovanni Cavallin 93 Jul 24, 2022
Image Detector and Convertor App created using python's Pillow, OpenCV, cvlib, numpy and streamlit packages.

Image Detector and Convertor App created using python's Pillow, OpenCV, cvlib, numpy and streamlit packages.

Siva Prakash 11 Jan 02, 2022
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
Convolutional Recurrent Neural Network (CRNN) for image-based sequence recognition.

Convolutional Recurrent Neural Network This software implements the Convolutional Recurrent Neural Network (CRNN), a combination of CNN, RNN and CTC l

Baoguang Shi 2k Dec 31, 2022
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.

Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis

Amazon Web Services - Labs 422 Jan 03, 2023
TedEval: A Fair Evaluation Metric for Scene Text Detectors

TedEval: A Fair Evaluation Metric for Scene Text Detectors Official Python 3 implementation of TedEval | paper | slides Chae Young Lee, Youngmin Baek,

Clova AI Research 167 Nov 20, 2022
An advanced 2D image manipulation with features such as edge detection and image segmentation built using OpenCV

OpenCV-ToothPaint3-Advanced-Digital-Image-Editor This application named ‘Tooth Paint’ version TP_2020.3 (64-bit) or version 3 was developed within a w

JunHong 1 Nov 05, 2021
The open source extract transaction infomation by using OCR.

Transaction OCR Mã nguồn trích xuất thông tin transaction từ file scaned pdf, ở đây tôi lựa chọn tài liệu sao kê công khai của Thuy Tien. Mã nguồn có

Nguyen Xuan Hung 18 Jun 02, 2022
Creating a virtual tv using opencv in python3.

Virtual-TV Creating a virtual tv using opencv in python3. In order to run the code follow the below given steps: Make sure the desired videos which ar

Vamsi 1 Jan 01, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

pdf-scraper-with-ocr With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't imp

Jacobo José Guijarro Villalba 75 Oct 21, 2022
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
Unofficial implementation of "TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from Scanned Document Images"

TableNet Unofficial implementation of ICDAR 2019 paper : TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from

Jainam Shah 243 Dec 30, 2022