Optical character recognition for Japanese text, with the main focus being Japanese manga

Overview

Manga OCR

Optical character recognition for Japanese text, with the main focus being Japanese manga. It uses a custom end-to-end model built with Transformers' Vision Encoder Decoder framework.

Manga OCR can be used as a general purpose printed Japanese OCR, but its main goal was to provide a high quality text recognition, robust against various scenarios specific to manga:

  • both vertical and horizontal text
  • text with furigana
  • text overlaid on images
  • wide variety of fonts and font styles
  • low quality images

Unlike many OCR models, Manga OCR supports recognizing multi-line text in a single forward pass, so that text bubbles found in manga can be processed at once, without splitting them into lines.

Code for training and synthetic data generation will be released soon.

Installation

You need Python 3.6, 3.7, 3.8 or 3.9. Unfortunately, PyTorch does not support Python 3.10 yet.

If you want to run with GPU, install PyTorch as described here, otherwise this step can be skipped.

Run in command line:

pip3 install manga-ocr

Usage

Python API

from manga_ocr import MangaOcr

mocr = MangaOcr()
text = mocr('/path/to/img')

or

import PIL.Image

from manga_ocr import MangaOcr

mocr = MangaOcr()
img = PIL.Image.open('/path/to/img')
text = mocr(img)

Running in the background

Manga OCR can run in the background and process new images as they appear.

You might use a tool like ShareX to manually capture a region of the screen and let the OCR read it either from the system clipboard, or a specified directory. By default, Manga OCR will write recognized text to clipboard, from which it can be read by a dictionary like Yomichan. Reading images from clipboard works only on Windows and macOS, on Linux you should read from a directory instead.

Your full setup for reading manga in Japanese with a dictionary might look like this:

capture region with ShareX -> write image to clipboard -> Manga OCR -> write text to clipboard -> Yomichan

manga_ocr_demo.mp4
  • To read images from clipboard and write recognized texts to clipboard, run in command line:
    manga_ocr
    
  • To read images from ShareX's screenshot folder, run in command line:
    manga_ocr "/path/to/sharex/screenshot/folder"
    

When running for the first time, downloading the model (~400 MB) might take a few minutes. The OCR is ready to use after OCR ready message appears in the logs.

  • To see other options, run in command line:
    manga_ocr --help
    

If manga_ocr doesn't work, you might also try replacing it with python -m manga_ocr.

Usage tips

  • OCR supports multi-line text, but the longer the text, the more likely some errors are to occur. If the recognition failed for some part of a longer text, you might try to run it on a smaller portion of the image.
  • The model was trained specifically to handle manga well, but should do a decent job on other types of printed text, such as novels or video games. It probably won't be able to handle handwritten text though.
  • The model always attempts to recognize some text on the image, even if there is none. Because it uses a transformer decoder (and therefore has some understanding of the Japanese language), it might even "dream up" some realistically looking sentences! This shouldn't be a problem for most use cases, but it might get improved in the next version.

Examples

Here are some cherry-picked examples showing the capability of the model.

image Manga OCR result
素直にあやまるしか
立川で見た〝穴〟の下の巨大な眼は:
実戦剣術も一流です
第30話重苦しい闇の奥で静かに呼吸づきながら
よかったじゃないわよ!何逃げてるのよ!!早くあいつを退治してよ!
ぎゃっ
ピンポーーン
LINK!私達7人の力でガノンの塔の結界をやぶります
ファイアパンチ
少し黙っている
わかるかな〜?
警察にも先生にも町中の人達に!!

Acknowledgments

This project was done with the usage of Manga109-s dataset.

Owner
Maciej Budyś
Maciej Budyś
A set of workflows for corpus building through OCR, post-correction and normalisation

PICCL: Philosophical Integrator of Computational and Corpus Libraries PICCL offers a workflow for corpus building and builds on a variety of tools. Th

Language Machines 41 Dec 27, 2022
Perspective recovery of text using transformed ellipses

unproject_text Perspective recovery of text using transformed ellipses. See full writeup at https://mzucker.github.io/2016/10/11/unprojecting-text-wit

Matt Zucker 111 Nov 13, 2022
Deskew is a command line tool for deskewing scanned text documents. It uses Hough transform to detect "text lines" in the image. As an output, you get an image rotated so that the lines are horizontal.

Deskew by Marek Mauder https://galfar.vevb.net/deskew https://github.com/galfar/deskew v1.30 2019-06-07 Overview Deskew is a command line tool for des

Marek Mauder 127 Dec 03, 2022
1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge

SIIM-COVID19-Detection Source code of the 1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge. 1.INSTALLATION Ubuntu 18.04.5 LTS CUD

Nguyen Ba Dung 170 Dec 21, 2022
Localization of thoracic abnormalities model based on VinBigData (top 1%)

Repository contains the code for 2nd place solution of VinBigData Chest X-ray Abnormalities Detection competition. The goal of competition was to auto

33 May 24, 2022
One Metrics Library to Rule Them All!

onemetric Installation Install onemetric from PyPI (recommended): pip install onemetric Install onemetric from the GitHub source: git clone https://gi

Piotr Skalski 49 Jan 03, 2023
Framework for the Complete Gaze Tracking Pipeline

Framework for the Complete Gaze Tracking Pipeline The figure below shows a general representation of the camera-to-screen gaze tracking pipeline [1].

Pascal 20 Jan 06, 2023
Detect the mathematical formula from the given picture and the same formula is extracted and converted into the latex code

Mathematical formulae extractor The goal of this project is to create a learning based system that takes an image of a math formula and returns corres

6 May 22, 2022
Generates a message from the infamous Jerma Impostor image

Generate your very own jerma sus imposter message. Modes: Default Mode: Only supports the characters " ", !, a, b, c, d, e, h, i, m, n, o, p, q, r, s,

Giorno420 1 Oct 27, 2022
This is a implementation of CRAFT OCR method

This is a implementation of CRAFT OCR method

Esaka 0 Nov 01, 2021
OCR engine for all the languages

Description kraken is a turn-key OCR system optimized for historical and non-Latin script material. kraken's main features are: Fully trainable layout

431 Jan 04, 2023
EQFace: An implementation of EQFace: A Simple Explicit Quality Network for Face Recognition

EQFace: A Simple Explicit Quality Network for Face Recognition The first face recognition network that generates explicit face quality online.

DeepCam Shenzhen 141 Dec 31, 2022
BoxToolBox is a simple python application built around the openCV library

BoxToolBox is a simple python application built around the openCV library. It is not a full featured application to guide you through the w

František Horínek 1 Nov 12, 2021
Convert PDF/Image to TXT using EasyOcr - the best OCR engine available!

PDFImage2TXT - DOWNLOAD INSTALLER HERE What can you do with it? Convert scanned PDFs to TXT. Convert scanned Documents to TXT. No coding required!! In

Hans Alemão 2 Feb 22, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 185 Jan 01, 2023
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
7th place solution

SIIM-FISABIO-RSNA-COVID-19-Detection 7th place solution Validation: We used iterative-stratification with 5 folds (https://github.com/trent-b/iterativ

11 Jul 17, 2022
A python screen recorder for low-end computers, provides high quality video output.

RecorderX - v1.0 A screen recorder made in Python with the help of OpenCv, it has ability to record your screen in high quality. No matter what your P

Priyanshu Jindal 4 Nov 10, 2021
Image Detector and Convertor App created using python's Pillow, OpenCV, cvlib, numpy and streamlit packages.

Image Detector and Convertor App created using python's Pillow, OpenCV, cvlib, numpy and streamlit packages.

Siva Prakash 11 Jan 02, 2022
Python rubik's cube solver

This program makes a 3D representation of a rubiks cube and solves it step by step.

Pablo QB 4 May 29, 2022