Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Overview

Sign Language Recognition Service

This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition. The service was developed as a part of a bachelor project at Aalborg University.

alt text

Requirements

  • Python 3.7
  • OpenPose 1.6.0
  • CUDA 10.0
  • cuDNN 7.5.0
  • Numpy 1.18.5
  • OpenCV 4.5.1.48
  • Flask 1.1.2
  • Tensorflow 2.0.0
  • Pandas 1.1.5
  • Tensorboard
  • Matplotlib
  • Seaborn
  • Scikit-Learn

How to use

Installing OpenPose

  1. Please install OpenPose 1.6.0 for Python by following the official guide. Note that the newest release on the OpenPose github is 1.7.0 - for this service to work, 1.6.0 must be used.

    A few things to note when installing OpenPose:

    • When cloning the OpenPose repository, use the following git command to get version 1.6.0:
      git clone --depth 1 --branch v1.6.0 https://github.com/CMU-Perceptual-Computing-Lab/openpose
      
    • Remember to run the following command on the newly cloned repository:
      git submodule update --init --recursive --remote
      
    • Use Visual Studio Enterprise 2017 to build the required files. Install this first if you do not already have it.
    • Install CUDA 10.0 and cuDNN 7.5.0 for CUDA 10.0 after installing Visual Studio Enterprise 2017.
    • When generating the files using CMake, make sure that the BUILD_PYTHON flag is enabled, and that the Python version is set to 3.7. Also make sure that the detected CUDA version is 10.0.
    • After building with Visual Studio Enterprise 2017, make sure that all necessary files have been generated.
      • There should be a openpose.dll in /x64/Release/
      • There should be a openpose.exp and openpose.lib in /src/openpose/Release/
      • There should be a pyopenpose.cp37-win_amd64.pyd in /python/openpose/Release/
  2. Install requirements from requirements.txt

  3. Change the path in main/openpose/paths.py to the path of your OpenPose installation:

    # Change this path so it points to your OpenPose path relative to this file
    OPEN_POSE_PATH = get_relative_path(__file__, '../../../../openpose')
    
  4. If you get any errors related to OpenPose when running the service, please go back and make sure that all instructions have been followed - be particularly careful to install the correct CUDA/cuDNN versions, make sure that the BUILD_PYTHON flag was enabled and that Python 3.7 was used when generating the files.

When OpenPose is successfully installed, you can either use the existing model trained on our dataset, or you can choose to make your own dataset and train a model on this instead.

alt text

Using the service

A singular endpoint '/recognize' has been created in order to perform recognition, which allows for POST requests to be made. The endpoint expects a sequence of base64 images, which will get converted into a suitable format recognizable by the classifier.

alt text

alt text

Creating a custom dataset

In order to create a custom dataset, you can access the file create_dataset.py and change the following constant:

DATASET_NAME = 'dsl_dataset'

Such that the path in the constant DATASET_DIR points to a folder where the dataset is located. This folder should contain another folder called 'src', which contains folders for all the desired labels in the dataset. Each of these folders should contain videos of the corresponding sign.

Before running the script, the following constants can be tweaked based on the desired settings:

WINDOW_LENGTH = 60
STRIDE = 5
BATCH_SIZE = 512
VAL_SPLIT = 0.2
TEST_SPLIT = 0.1

Finally, the following constant can be changed:

CREATE_RAW_DATA = True

This is because initial feature extraction by OpenPose can be a fairly lengthy process. This allows for the tweaking of the dataset after features have been extracted, by setting this to False. Note that the raw OpenPose data must be created before the actual dataset can be created, so it is necessary to do this at least once.

Training a custom model

In order to train a custom model you can make use of the train_models.py file. Here, the constant DATASET_NAME can be changed to reflect the name of the dataset you wish to use, such that the DATASET_DIR points to the correct folder. Furthermore, you can specify a tensorboard directory:

DATASET_NAME = 'dsl_dataset'
DATASET_DIR = f'.\\main\\algorithm\\datasets\\{DATASET_NAME}'
MODELS_DIR = f'.\\main\\algorithm\\models\\{DATASET_NAME}'
TENSORBOARD_DIR = f'{MODELS_DIR}\\logs'

Before running the script, you can tweak various training settings as well as the hyper parameters of the model by changing the following constants:

MODEL_NAME = "model"
EPOCHS = 25
LAYER_SIZES = [64]
DENSE_LAYERS = [0]
DENSE_ACTIVATION = "relu"
LSTM_LAYERS = [2]
LSTM_ACTIVATION = "tanh"
OUTPUT_ACTIVATION = "softmax"

Note that the trainer can train multiple models depending on these settings. Changing the LAYER_SIZES, DENSE_LAYERS and LSTM_LAYERS to contain several values will result in a model being trained for each possible combination.

After training your model, you should change the paths.py located in main/core/ to reflect the path to the new model by changing the constant MODEL_NAME to the name of your model:

MODEL_NAME = 'dsl_lstm.model'

Finally, it also possible to generate a confusion matrix for your model by using the generate_confusion_matrix.py script. Here, you simply change the constants DATASET_NAME and MODEL_NAME such that the DATASET_DIR points to your dataset directory, and MODEL_DIR points to your model directory, respectively:

DATASET_NAME = "dsl_dataset"
MODEL_NAME = "dsl_lstm"
DATASET_DIR = f"./main/algorithm/datasets/{DATASET_NAME}/{DATASET_NAME}.pickle"
MODEL_DIR = f"./main/algorithm/models/{DATASET_NAME}/{MODEL_NAME}"

Happy signing :O)

Authors

  • Adil Cemalovic
  • Martin Lønne
  • Magnus Helleshøj Lund
Owner
Martin Lønne
Full-stack software developer with an interest in Cloud development. Is working most with Javascript, C#, and Python for machine learning.
Martin Lønne
Turn images of tables into CSV data. Detect tables from images and run OCR on the cells.

Table of Contents Overview Requirements Demo Modules Overview This python package contains modules to help with finding and extracting tabular data fr

Eric Ihli 311 Dec 24, 2022
OCR software for recognition of handwritten text

Handwriting OCR The project tries to create software for recognition of a handwritten text from photos (also for Czech language). It uses computer vis

Břetislav Hájek 562 Jan 03, 2023
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

Christian Bartz 496 Jan 05, 2023
Primary QPDF source code and documentation

QPDF QPDF is a command-line tool and C++ library that performs content-preserving transformations on PDF files. It supports linearization, encryption,

QPDF 2.2k Jan 04, 2023
Convolutional Recurrent Neural Network (CRNN) for image-based sequence recognition.

Convolutional Recurrent Neural Network This software implements the Convolutional Recurrent Neural Network (CRNN), a combination of CNN, RNN and CTC l

Baoguang Shi 2k Dec 31, 2022
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
Pure Javascript OCR for more than 100 Languages 📖🎉🖥

Version 2 is now available and under development in the master branch, read a story about v2: Why I refactor tesseract.js v2? Check the support/1.x br

Project Naptha 29.2k Jan 05, 2023
A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database.

A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database. The structure, shape and proportions of the faces are comp

Pavankumar Khot 4 Mar 19, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Steve Tu 71 Dec 30, 2022
Creating of virtual elements of the graphical interface using opencv and mediapipe.

Virtual GUI Creating of virtual elements of the graphical interface using opencv and mediapipe. Element GUI Output Description Button By default the b

Aleksei 4 Jun 16, 2022
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention

87 Dec 26, 2022
Deep learning based page layout analysis

Deep Learning Based Page Layout Analyze This is a Python implementaion of page layout analyze tool. The goal of page layout analyze is to segment page

186 Dec 29, 2022
Automatically resolve RidderMaster based on TensorFlow & OpenCV

AutoRiddleMaster Automatically resolve RidderMaster based on TensorFlow & OpenCV 基于 TensorFlow 和 OpenCV 实现的全自动化解御迷士小马谜题 Demo How to use Deploy the ser

神龙章轩 5 Nov 19, 2021
Binarize document images

Binarization Binarization for document images Examples Introduction This tool performs document image binarization (i.e. transform colour/grayscale to

QURATOR-SPK 48 Jan 02, 2023
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 185 Jan 01, 2023
This repo contains several opencv projects done while learning opencv in python.

opencv-projects-python This repo contains both several opencv projects done while learning opencv by python and opencv learning resources [Basic conce

Fatin Shadab 2 Nov 03, 2022
nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex.

faceprocessor nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex. Tech faceprocessor uses a number of open source projec

NoFaceDB 3 Sep 06, 2021
A Python wrapper for the tesseract-ocr API

tesserocr A simple, Pillow-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR). tesserocr integrates directly with

Fayez 1.7k Dec 31, 2022
A curated list of papers and resources for scene text detection and recognition

Awesome Scene Text A curated list of papers and resources for scene text detection and recognition The year when a paper was first published, includin

Jan Zdenek 43 Mar 15, 2022