Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Overview

Sign Language Recognition Service

This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition. The service was developed as a part of a bachelor project at Aalborg University.

alt text

Requirements

  • Python 3.7
  • OpenPose 1.6.0
  • CUDA 10.0
  • cuDNN 7.5.0
  • Numpy 1.18.5
  • OpenCV 4.5.1.48
  • Flask 1.1.2
  • Tensorflow 2.0.0
  • Pandas 1.1.5
  • Tensorboard
  • Matplotlib
  • Seaborn
  • Scikit-Learn

How to use

Installing OpenPose

  1. Please install OpenPose 1.6.0 for Python by following the official guide. Note that the newest release on the OpenPose github is 1.7.0 - for this service to work, 1.6.0 must be used.

    A few things to note when installing OpenPose:

    • When cloning the OpenPose repository, use the following git command to get version 1.6.0:
      git clone --depth 1 --branch v1.6.0 https://github.com/CMU-Perceptual-Computing-Lab/openpose
      
    • Remember to run the following command on the newly cloned repository:
      git submodule update --init --recursive --remote
      
    • Use Visual Studio Enterprise 2017 to build the required files. Install this first if you do not already have it.
    • Install CUDA 10.0 and cuDNN 7.5.0 for CUDA 10.0 after installing Visual Studio Enterprise 2017.
    • When generating the files using CMake, make sure that the BUILD_PYTHON flag is enabled, and that the Python version is set to 3.7. Also make sure that the detected CUDA version is 10.0.
    • After building with Visual Studio Enterprise 2017, make sure that all necessary files have been generated.
      • There should be a openpose.dll in /x64/Release/
      • There should be a openpose.exp and openpose.lib in /src/openpose/Release/
      • There should be a pyopenpose.cp37-win_amd64.pyd in /python/openpose/Release/
  2. Install requirements from requirements.txt

  3. Change the path in main/openpose/paths.py to the path of your OpenPose installation:

    # Change this path so it points to your OpenPose path relative to this file
    OPEN_POSE_PATH = get_relative_path(__file__, '../../../../openpose')
    
  4. If you get any errors related to OpenPose when running the service, please go back and make sure that all instructions have been followed - be particularly careful to install the correct CUDA/cuDNN versions, make sure that the BUILD_PYTHON flag was enabled and that Python 3.7 was used when generating the files.

When OpenPose is successfully installed, you can either use the existing model trained on our dataset, or you can choose to make your own dataset and train a model on this instead.

alt text

Using the service

A singular endpoint '/recognize' has been created in order to perform recognition, which allows for POST requests to be made. The endpoint expects a sequence of base64 images, which will get converted into a suitable format recognizable by the classifier.

alt text

alt text

Creating a custom dataset

In order to create a custom dataset, you can access the file create_dataset.py and change the following constant:

DATASET_NAME = 'dsl_dataset'

Such that the path in the constant DATASET_DIR points to a folder where the dataset is located. This folder should contain another folder called 'src', which contains folders for all the desired labels in the dataset. Each of these folders should contain videos of the corresponding sign.

Before running the script, the following constants can be tweaked based on the desired settings:

WINDOW_LENGTH = 60
STRIDE = 5
BATCH_SIZE = 512
VAL_SPLIT = 0.2
TEST_SPLIT = 0.1

Finally, the following constant can be changed:

CREATE_RAW_DATA = True

This is because initial feature extraction by OpenPose can be a fairly lengthy process. This allows for the tweaking of the dataset after features have been extracted, by setting this to False. Note that the raw OpenPose data must be created before the actual dataset can be created, so it is necessary to do this at least once.

Training a custom model

In order to train a custom model you can make use of the train_models.py file. Here, the constant DATASET_NAME can be changed to reflect the name of the dataset you wish to use, such that the DATASET_DIR points to the correct folder. Furthermore, you can specify a tensorboard directory:

DATASET_NAME = 'dsl_dataset'
DATASET_DIR = f'.\\main\\algorithm\\datasets\\{DATASET_NAME}'
MODELS_DIR = f'.\\main\\algorithm\\models\\{DATASET_NAME}'
TENSORBOARD_DIR = f'{MODELS_DIR}\\logs'

Before running the script, you can tweak various training settings as well as the hyper parameters of the model by changing the following constants:

MODEL_NAME = "model"
EPOCHS = 25
LAYER_SIZES = [64]
DENSE_LAYERS = [0]
DENSE_ACTIVATION = "relu"
LSTM_LAYERS = [2]
LSTM_ACTIVATION = "tanh"
OUTPUT_ACTIVATION = "softmax"

Note that the trainer can train multiple models depending on these settings. Changing the LAYER_SIZES, DENSE_LAYERS and LSTM_LAYERS to contain several values will result in a model being trained for each possible combination.

After training your model, you should change the paths.py located in main/core/ to reflect the path to the new model by changing the constant MODEL_NAME to the name of your model:

MODEL_NAME = 'dsl_lstm.model'

Finally, it also possible to generate a confusion matrix for your model by using the generate_confusion_matrix.py script. Here, you simply change the constants DATASET_NAME and MODEL_NAME such that the DATASET_DIR points to your dataset directory, and MODEL_DIR points to your model directory, respectively:

DATASET_NAME = "dsl_dataset"
MODEL_NAME = "dsl_lstm"
DATASET_DIR = f"./main/algorithm/datasets/{DATASET_NAME}/{DATASET_NAME}.pickle"
MODEL_DIR = f"./main/algorithm/models/{DATASET_NAME}/{MODEL_NAME}"

Happy signing :O)

Authors

  • Adil Cemalovic
  • Martin Lønne
  • Magnus Helleshøj Lund
Owner
Martin Lønne
Full-stack software developer with an interest in Cloud development. Is working most with Javascript, C#, and Python for machine learning.
Martin Lønne
Visual Attention based OCR

Attention-OCR Authours: Qi Guo and Yuntian Deng Visual Attention based OCR. The model first runs a sliding CNN on the image (images are resized to hei

Yuntian Deng 1.1k Jan 02, 2023
Table Extraction Tool

Tree Structure - Table Extraction Fonduer has been successfully extended to perform information extraction from richly formatted data such as tables.

HazyResearch 88 Jun 02, 2022
This is a tensorflow re-implementation of PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network.My blog:

PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network Introduction This is a tensorflow re-implementation of PSENet: Shape Robu

Michael liu 498 Dec 30, 2022
Links to awesome OCR projects

Awesome OCR This list contains links to great software tools and libraries and literature related to Optical Character Recognition (OCR). Contribution

Konstantin Baierer 2.2k Jan 02, 2023
Automatically remove the mosaics in images and videos, or add mosaics to them.

Automatically remove the mosaics in images and videos, or add mosaics to them.

Hypo 1.4k Dec 30, 2022
scantailor - Scan Tailor is an interactive post-processing tool for scanned pages.

Scan Tailor - scantailor.org This project is no longer maintained, and has not been maintained for a while. About Scan Tailor is an interactive post-p

1.5k Dec 28, 2022
EAST for ICPR MTWI 2018 Challenge II (Text detection of network images)

EAST_ICPR2018: EAST for ICPR MTWI 2018 Challenge II (Text detection of network images) Introduction This is a repository forked from argman/EAST for t

QichaoWu 49 Dec 24, 2022
~1000 book pages + OpenCV + python = page regions identified as paragraphs, lines, images, captions, etc.

cosc428-structor I had an open-ended Computer Vision assignment to complete, and an out-of-copyright book that I wanted to turn into an ebook. Convent

Chad Oliver 45 Dec 06, 2022
This can be use to convert text in a file to handwritten text.

TextToHandwriting This can be used to convert text to handwriting. Clone this project or download the code. Run TextToImage.py give the filename of th

Ashutosh Mahapatra 2 Feb 06, 2022
This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the robots of the future.

This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the

Elkin Javier Guerra Galeano 17 Nov 03, 2022
Convolutional Recurrent Neural Networks(CRNN) for Scene Text Recognition

CRNN_Tensorflow This is a TensorFlow implementation of a Deep Neural Network for scene text recognition. It is mainly based on the paper "An End-to-En

MaybeShewill-CV 1000 Dec 27, 2022
This repository provides train&test code, dataset, det.&rec. annotation, evaluation script, annotation tool, and ranking.

SCUT-CTW1500 Datasets We have updated annotations for both train and test set. Train: 1000 images [images][annos] Additional point annotation for each

Yuliang Liu 600 Dec 18, 2022
Turn images of tables into CSV data. Detect tables from images and run OCR on the cells.

Table of Contents Overview Requirements Demo Modules Overview This python package contains modules to help with finding and extracting tabular data fr

Eric Ihli 311 Dec 24, 2022
LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

Murtaza Hassan 815 Dec 29, 2022
computer vision, image processing and machine learning on the web browser or node.

Image processing and Machine learning labs   computer vision, image processing and machine learning on the web browser or node note Fast Fourier Trans

ryohei tanaka 487 Nov 11, 2022
Tools for manipulating and evaluating the hOCR format for representing multi-lingual OCR results by embedding them into HTML.

hocr-tools About About the code Installation System-wide with pip System-wide from source virtualenv Available Programs hocr-check -- check the hOCR f

OCRopus 285 Dec 08, 2022
This project is basically to draw lines with your hand, using python, opencv, mediapipe.

Paint Opencv 📷 This project is basically to draw lines with your hand, using python, opencv, mediapipe. Screenshoots 📱 Tools ⚙️ Python Opencv Mediap

Williams Ismael Bobadilla Torres 3 Nov 17, 2021
TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n

zhangjing1 24 Apr 28, 2022
Contextual speed detection for python

Speed Prediction using Optical Flow and 2D CNN About the challenge: Comma.AI Speed Challenge This challenge was developed by Comma.AI to predict the s

Mahimana Bhatt 2 Dec 16, 2021
Super Mario Game With Python

Super_Mario Hello all this is a simple python program which tries to use our body as a controller for the super mario game Here I have used media pipe

Adarsh Badagala 219 Nov 25, 2022