Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Overview

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai.

Contributions to this repo are welcome, e.g., some other backbone networks (including the model definition and pretrained models).

PLEASE CHECK EXSITING ISSUES BEFORE OPENNING YOUR OWN ONE. IF A SAME OR SIMILAR ISSUE HAD BEEN POSTED BEFORE, JUST REFER TO IT, AND DO NO OPEN A NEW ONE.

Installation

Clone the repo

git clone --recursive [email protected]:ZJULearning/pixel_link.git

Denote the root directory path of pixel_link by ${pixel_link_root}.

Add the path of ${pixel_link_root}/pylib/src to your PYTHONPATH:

export PYTHONPATH=${pixel_link_root}/pylib/src:$PYTHONPATH

Prerequisites

(Only tested on) Ubuntu14.04 and 16.04 with:

  • Python 2.7
  • Tensorflow-gpu >= 1.1
  • opencv2
  • setproctitle
  • matplotlib

Anaconda is recommended to for an easier installation:

  1. Install Anaconda
  2. Create and activate the required virtual environment by:
conda env create --file pixel_link_env.txt
source activate pixel_link

Testing

Download the pretrained model

Unzip the downloaded model. It contains 4 files:

  • config.py
  • model.ckpt-xxx.data-00000-of-00001
  • model.ckpt-xxx.index
  • model.ckpt-xxx.meta

Denote their parent directory as ${model_path}.

Test on ICDAR2015

The reported results on ICDAR2015 are:

Model Recall Precision F-mean
PixelLink+VGG16 2s 82.0 85.5 83.7
PixelLink+VGG16 4s 81.7 82.9 82.3

Suppose you have downloaded the ICDAR2015 dataset, execute the following commands to test the model on ICDAR2015:

cd ${pixel_link_root}
./scripts/test.sh ${GPU_ID} ${model_path}/model.ckpt-xxx ${path_to_icdar2015}/ch4_test_images

For example:

./scripts/test.sh 3 ~/temp/conv3_3/model.ckpt-38055 ~/dataset/ICDAR2015/Challenge4/ch4_test_images

The program will create a zip file of detection results, which can be submitted to the ICDAR2015 server directly. The detection results can be visualized via scripts/vis.sh.

Here are some samples: ./samples/img_333_pred.jpg ./samples/img_249_pred.jpg

Test on any images

Put the images to be tested in a single directory, i.e., ${image_dir}. Then:

cd ${pixel_link_root}
./scripts/test_any.sh ${GPU_ID} ${model_path}/model.ckpt-xxx ${image_dir}

For example:

 ./scripts/test_any.sh 3 ~/temp/conv3_3/model.ckpt-38055 ~/dataset/ICDAR2015/Challenge4/ch4_training_images

The program will visualize the detection results directly on images. If the detection result is not satisfying, try to:

  1. Adjust the inference parameters like eval_image_width, eval_image_height, pixel_conf_threshold, link_conf_threshold.
  2. Or train your own model.

Training

Converting the dataset to tfrecords files

Scripts for converting ICDAR2015 and SynthText datasets have been provided in the datasets directory. It not hard to write a converting script for your own dataset.

Train your own model

  • Modify scripts/train.sh to configure your dataset name and dataset path like:
DATASET=icdar2015
DATASET_DIR=$HOME/dataset/pixel_link/icdar2015
  • Start training
./scripts/train.sh ${GPU_IDs} ${IMG_PER_GPU}

For example, ./scripts/train.sh 0,1,2 8.

The existing training strategy in scripts/train.sh is configured for icdar2015, modify it if necessary. A lot of training or model options are available in config.py, try it yourself if you are interested.

Acknowlegement

How to detect objects in real time by using Jupyter Notebook and Neural Networks , by using Yolo3

Real Time Object Recognition From your Screen Desktop . In this post, I will explain how to build a simply program to detect objects from you desktop

Ruslan Magana Vsevolodovna 2 Sep 28, 2022
textspotter - An End-to-End TextSpotter with Explicit Alignment and Attention

An End-to-End TextSpotter with Explicit Alignment and Attention This is initially described in our CVPR 2018 paper. Getting Started Installation Clone

Tong He 323 Nov 10, 2022
Détection de créneaux de vaccination disponibles pour l'outil ViteMaDose

Vite Ma Dose ! est un outil open source de CovidTracker permettant de détecter les rendez-vous disponibles dans votre département afin de vous faire v

CovidTracker 239 Dec 13, 2022
Opencv face recognition desktop application

Opencv-Face-Recognition Opencv face recognition desktop application Program developed by Gustavo Wydler Azuaga - 2021-11-19 Screenshots of the program

Gus 1 Nov 19, 2021
A curated list of papers, code and resources pertaining to image composition

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

BCMI 391 Dec 30, 2022
huoyijie 1.2k Dec 29, 2022
A post-processing tool for scanned sheets of paper.

unpaper Originally written by Jens Gulden — see AUTHORS for more information. Licensed under GNU GPL v2 — see COPYING for more information. Overview u

27 Dec 07, 2022
ARU-Net - Deep Learning Chinese Word Segment

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents Contents Introduction Installation Demo Training Introduction This is the

128 Sep 12, 2022
Fast style transfer

faststyle Faststyle aims to provide an easy and modular interface to Image to Image problems based on feature loss. Install Making sure you have a wor

Lucas Vazquez 21 Mar 11, 2022
Make OpenCV camera loops less of a chore by skipping the boilerplate and getting right to the interesting stuff

camloop Forget the boilerplate from OpenCV camera loops and get to coding the interesting stuff Table of Contents Usage Install Quickstart More advanc

Gabriel Lefundes 9 Nov 12, 2021
Character Segmentation using TensorFlow

Character Segmentation Segment characters and spaces in one text line,from this paper Chinese English mixed Character Segmentation as Semantic Segment

26 Aug 25, 2022
A bot that plays TFT using OCR. Keeps track of bench, board, items, and plays the user defined team comp.

NOTES: To ensure best results, make sure you are running this on a computer that has decent specs. 1920x1080 fullscreen is required in League, game mu

francis 125 Dec 30, 2022
Repository collecting all the submodules for the new PyTorch-based OCR System.

OCRopus3 is being replaced by OCRopus4, which is a rewrite using PyTorch 1.7; release should be soonish. Please check github.com/tmbdev/ocropus for up

NVIDIA Research Projects 138 Dec 09, 2022
Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels"

Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels" Please refer to htt

Ke Sun 1 Feb 14, 2022
一键翻译各类图片内文字

一键翻译各类图片内文字 针对群内、各个图站上大量不太可能会有人去翻译的图片设计,让我这种日语小白能够勉强看懂图片 主要支持日语,不过也能识别汉语和小写英文 支持简单的涂白和嵌字

574 Dec 28, 2022
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention

87 Dec 26, 2022
Multi-choice answer sheet correction system using computer vision with opencv & python.

Multi choice answer correction 🔴 5 answer sheet samples with a specific solution for detecting answers and sheet correction. 🔴 By running the soluti

Reza Firouzi 7 Mar 07, 2022
Pytorch implementation of PSEnet with Pyramid Attention Network as feature extractor

Scene Text-Spotting based on PSEnet+CRNN Pytorch implementation of an end to end Text-Spotter with a PSEnet text detector and CRNN text recognizer. We

azhar shaikh 62 Oct 10, 2022
Select range and every time the screen changes, OCR is activated.

ASOCR(Auto Screen OCR) Select range and every time you press Space key, OCR is activated. 範囲を選ぶと、あなたがスペースキーを押すたびに、画面が変わる度にOCRが起動します。 usage1: simple OC

1 Feb 13, 2022