Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)

Related tags

Computer VisionSEAM
Overview

SEAM

The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion.

You can also download the repository from https://gitee.com/hibercraft/SEAM

Abstract

Image-level weakly supervised semantic segmentation is a challenging problem that has been deeply studied in recentyears. Most of advanced solutions exploit class activation map (CAM). However, CAMs can hardly serve as the object mask due to the gap between full and weak supervisions. In this paper, we propose a self-supervised equivariant attention mechanism (SEAM) to discover additional supervision and narrow the gap. Our method is based on the observation that equivariance is an implicit constraint in fully supervised semantic segmentation, whose pixel-level labels take the same spatial transformation as the input images during data augmentation. However, this constraint is lost on the CAMs trained by image-level supervision. Therefore, we propose consistency regularization on predicted CAMs from various transformed images to provide self-supervision for network learning. Moreover, we propose a pixel correlation module (PCM), which exploits context appearance information and refines the prediction of current pixel by its similar neighbors, leading to further improvement on CAMs consistency. Extensive experiments on PASCAL VOC 2012 dataset demonstrate our method outperforms state-of-the-art methods using the same level of supervision.

Thanks to the work of jiwoon-ahn, the code of this repository borrow heavly from his AffinityNet repository, and we follw the same pipeline to verify the effectiveness of our SEAM.

Requirements

  • Python 3.6
  • pytorch 0.4.1, torchvision 0.2.1
  • CUDA 9.0
  • 4 x GPUs (12GB)

Usage

Installation

  • Download the repository.
git clone https://github.com/YudeWang/SEAM.git
  • Install python dependencies.
pip install -r requirements.txt
ln -s $your_dataset_path/VOCdevkit/VOC2012 VOC2012
  • (Optional) The image-level labels have already been given in voc12/cls_label.npy. If you want to regenerate it (which is unnecessary), please download the annotation of VOC 2012 SegmentationClassAug training set (containing 10582 images), which can be download here and place them all as VOC2012/SegmentationClassAug/xxxxxx.png. Then run the code
cd voc12
python make_cls_labels.py --voc12_root VOC2012

SEAM step

  1. SEAM training
python train_SEAM.py --voc12_root VOC2012 --weights $pretrained_model --session_name $your_session_name
  1. SEAM inference.
python infer_SEAM.py --weights $SEAM_weights --infer_list [voc12/val.txt | voc12/train.txt | voc12/train_aug.txt] --out_cam $your_cam_dir --out_crf $your_crf_dir
  1. SEAM step evaluation. We provide python mIoU evaluation script evaluation.py, or you can use official development kit. Here we suggest to show the curve of mIoU with different background score.
python evaluation.py --list VOC2012/ImageSets/Segmentation/[val.txt | train.txt] --predict_dir $your_cam_dir --gt_dir VOC2012/SegmentationClass --comment $your_comments --type npy --curve True

Random walk step

The random walk step keep the same with AffinityNet repository.

  1. Train AffinityNet.
python train_aff.py --weights $pretrained_model --voc12_root VOC2012 --la_crf_dir $your_crf_dir_4.0 --ha_crf_dir $your_crf_dir_24.0 --session_name $your_session_name
  1. Random walk propagation
python infer_aff.py --weights $aff_weights --infer_list [voc12/val.txt | voc12/train.txt] --cam_dir $your_cam_dir --voc12_root VOC2012 --out_rw $your_rw_dir
  1. Random walk step evaluation
python evaluation.py --list VOC2012/ImageSets/Segmentation/[val.txt | train.txt] --predict_dir $your_rw_dir --gt_dir VOC2012/SegmentationClass --comment $your_comments --type png

Pseudo labels retrain

Pseudo label retrain on DeepLabv1. Code is available here.

Citation

Please cite our paper if the code is helpful to your research.

@InProceedings{Wang_2020_CVPR_SEAM,
    author = {Yude Wang and Jie Zhang and Meina Kan and Shiguang Shan and Xilin Chen},
    title = {Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation},
    booktitle = {Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2020}
}

Reference

[1] J. Ahn and S. Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Owner
Hibercraft
CS PhD, CV & DL
Hibercraft
Face Recognizer using Opencv Python

Face Recognizer using Opencv Python The first step create your own dataset with file open-cv-create_dataset second step You can put the photo accordin

Han Izza 2 Nov 16, 2021
Natural language detection

Detect the language of text. What’s so cool about franc? franc can support more languages(†) than any other library franc is packaged with support for

Titus 3.8k Jan 02, 2023
Convert scans of handwritten notes to beautiful, compact PDFs

Convert scans of handwritten notes to beautiful, compact PDFs

Matt Zucker 4.8k Jan 01, 2023
Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz.

opencv_yuz_bulma Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz. Bilgisarın kendi kamerasını kullanmak için;

Ahmet Haydar Ornek 6 Apr 16, 2022
A synthetic data generator for text recognition

TextRecognitionDataGenerator A synthetic data generator for text recognition What is it for? Generating text image samples to train an OCR software. N

Edouard Belval 2.5k Jan 04, 2023
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
Web interface for browsing arXiv papers

Currently, arxivbox considers only major computer vision and machine learning conferences

Ankan Kumar Bhunia 12 Sep 11, 2022
Kornia is a open source differentiable computer vision library for PyTorch.

Open Source Differentiable Computer Vision Library

kornia 7.6k Jan 06, 2023
virtual mouse which can copy files, close tabs and many other features !

AI Virtual Mouse Controller Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip loca

Diwas Pandey 23 Oct 05, 2021
Camera Intrinsic Calibration and Hand-Eye Calibration in Pybullet

This repository is mainly for camera intrinsic calibration and hand-eye calibration. Synthetic experiments are conducted in PyBullet simulator. 1. Tes

CAI Junhao 7 Oct 03, 2022
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
Msos searcher - A half-hearted attempt at finding a magic square of squares

MSOS searcher A half-hearted attempt at finding (or rather searching) a MSOS (Magic Square of Squares) in the spirit of the Parker Square. Running I r

Niels Mündler 1 Jan 02, 2022
OCR engine for all the languages

Description kraken is a turn-key OCR system optimized for historical and non-Latin script material. kraken's main features are: Fully trainable layout

431 Jan 04, 2023
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
Motion detector, Full body detection, Upper body detection, Cat face detection, Smile detection, Face detection (haar cascade), Silverware detection, Face detection (lbp), and Sending email notifications

Security camera running OpenCV for object and motion detection. The camera will send email with image of any objects it detects. It also runs a server that provides web interface with live stream vid

Peace 10 Jun 30, 2021
ScanTailor Advanced is the version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and fixes.

ScanTailor Advanced The ScanTailor version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and f

952 Dec 31, 2022
Train custom VR face tracking parameters

Pal Buddy Guy: The anipal's best friend This is a small script to improve upon the tracking capabilities of the Vive Pro Eye and facial tracker. You c

7 Dec 12, 2021
The papers published in top-tier AI conferences in recent years.

AI-conference-papers The papers published in top-tier AI conferences in recent years. Paper table AAAI ICLR CVPR ICML ICCV ECCV NIPS 2019 ✔️ ✔️ ✔️ ✔️

Jinbae Park 6 Dec 09, 2022
Color Picker and Color Detection tool for METR4202

METR4202 Color Detection Help This is sample code that can be used for the METR4202 project demo. There are two files provided, both running on Python

Miguel Valencia 1 Oct 23, 2021
PianoVisuals - Create background videos synced with piano music using opencv

Steps Record piano video Use Neural Network to do body segmentation (video matti

Solbiati Alessandro 4 Jan 24, 2022