Document Image Dewarping

Overview

Document image dewarping using text-lines and line Segments

Abstract

Conventional text-line based document dewarping methods have problems when handling complex layout and/or very few text-lines. When there are few aligned text-lines in the image, this usually means that photos, graphics and/or tables take large portion of the input instead. Hence, for the robust document dewarping, we propose to use line segments in the image in addition to the aligned text-lines. Based on the assumption and observation that all the transformed line segments are still straight (line to line mapping), and many of them are horizontally or vertically aligned in the well-rectified images, we encode this properties into the cost function in addition to the text-line based cost. By minimizing the function, we can obtain transformation parameters for camera pose, page curve (extrinsic parameters) and camera focal length (intrinsic parameter), which are used for document rectification. Considering that there are many outliers in line segment directions and missed text-lines in some cases, the overall algorithm is designed in an iterative manner. At each step, we remove text components and line segments that are not well horizontal/vertical aligned, and then minimize the cost function with the updated information. Experimental results show that the proposed method is robust to the variety of page layouts. Moreover, the proposed method can extend to general curves surfaces as well as document.

Algorithm

Two line semgent properties

Straightness property

The straightness property describes the line segments extracted in curved document image, lines on the curved document surface become still straight in the well-rectified domain (Although the lines extracted in the well-rectified image can be curved in the curved document surface). It means that line-to-line mapping. Since the straightness property is always satisfied with all plane to plane mapping, it is not a significant constraint in rectification considering only camera view (such as homography). However we consider page curve as well as camera view in rectification process, then this property becomes an efficient constraint that prevents lines from being curved.

Alignment property

Based on the observation that the majority of line segments are horizontally or vertically aligned in the rectified images.

Outlier removal

The direct optimization of equation may yield poorly rectified results, due to outliers. We treat two outlier types that are missed text-lines and line segments having arbitrary direction (non horizontal/vertical). For the outlier removal, we design an iterative method. At each step, we refine the features (text components and line segments) by removing outlier (that are not well aligned) and minimize the cost function with updated inliers.

Experimental results

CBDAR 2007 dataset

We evaluate our method on the CBDAR 2007 dewarpint contest dataset [http://staffhome.ecm.uwa.edu.au/~00082689/downloads.html], that is consisted of binarized text images.

Input image Kim [2] Proposed

Our document image dataset

In order to consist of non conventional document images (i.e., not text-abundant cases), we collected 100 images having various layouts (e.g., three column documents, documents containing large tables and/or figures, presentation slides, and so on).

Input image Kim [2] Proposed

Our curved image dataset

In order to consist of general curved surface images (such as bottles), we collected 74 images.

Input image Kim [2] Proposed

Executable program

Executable program can be downloaded by below links:

http://ispl.synology.me:8480/sharing/uA2DTRA8U

Reference

[1] Taeho Kil, Wonkyo Seo, Hyung Il Koo and Nam Ik Cho, "Robust Document Image Dewarping Using Text-Line and Line Segments", ICDAR 2017.

[2] Beom Su Kim, Hyung Il Koo, and Nam Ik Cho, "Document Dewarping via Text-line based Optimization", Pattern Recognition 2015.

Owner
Taeho Kil
My Research: Visual-Linguistic Representation, Computer Vision, Image Processing, Deep Learning
Taeho Kil
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
ScanTailor Advanced is the version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and fixes.

ScanTailor Advanced The ScanTailor version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and f

952 Dec 31, 2022
Papers, Datasets, Algorithms, SOTA for STR. Long-time Maintaining

Scene Text Recognition Recommendations Everythin about Scene Text Recognition SOTA • Papers • Datasets • Code Contents 1. Papers 2. Datasets 2.1 Synth

Deep Learning and Vision Computing Lab, SCUT 197 Jan 05, 2023
轻量级公式 OCR 小工具:一键识别各类公式图片,并转换为 LaTeX 格式

QC-Formula | 青尘公式 OCR 介绍 轻量级开源公式 OCR 小工具:一键识别公式图片,并转换为 LaTeX 格式。 支持从 电脑本地 导入公式图片;(后续版本将支持直接从网页导入图片) 公式图片支持 .png / .jpg / .bmp,大小为 4M 以内均可; 支持印刷体及手写体,前

青尘工作室 26 Jan 07, 2023
Table recognition inside douments using neural networks

TableTrainNet A simple project for training and testing table recognition in documents. This project was developed to make a neural network which reco

Giovanni Cavallin 93 Jul 24, 2022
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)

English | 简体中文 Introduction PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and a

27.5k Jan 08, 2023
CTPN + DenseNet + CTC based end-to-end Chinese OCR implemented using tensorflow and keras

简介 基于Tensorflow和Keras实现端到端的不定长中文字符检测和识别 文本检测:CTPN 文本识别:DenseNet + CTC 环境部署 sh setup.sh 注:CPU环境执行前需注释掉for gpu部分,并解开for cpu部分的注释 Demo 将测试图片放入test_images

Yang Chenguang 2.6k Dec 29, 2022
chineseocr/table_line 表格线检测模型pytorch版

table_line_pytorch chineseocr/table_detct 表格线检测模型table_line pytorch版 原项目github: https://github.com/chineseocr/table-detect 1、模型转换 下载原项目table_detect模型文

1 Oct 21, 2021
原神风花节自动弹琴辅助

GenshinAutoPlayBalladsofBreeze 原神风花节自动弹琴辅助(已适配1920*1080分辨率) 本程序基于opencv图像识别技术,不存在任何封号。 因为正确率取决于你的cpu性能,10900k都不一定全对。 由于图像识别存在误差,根本无法确定出错时间。更不用说被检测到了。

晓轩 20 Oct 27, 2022
[EMNLP 2021] Improving and Simplifying Pattern Exploiting Training

ADAPET This repository contains the official code for the paper: "Improving and Simplifying Pattern Exploiting Training". The model improves and simpl

Rakesh R Menon 138 Dec 26, 2022
CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering" official PyTorch implementation.

LED2-Net This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering". Y

Fu-En Wang 83 Jan 04, 2023
Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels"

Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels" Please refer to htt

Ke Sun 1 Feb 14, 2022
https://arxiv.org/abs/1904.01941

Character-Region-Awareness-for-Text-Detection- https://arxiv.org/abs/1904.01941 Train You can train SynthText data use python source/train_SynthText.p

DayDayUp 120 Dec 28, 2022
Some Boring Research About Products Recognition 、Duplicate Img Detection、Img Stitch、OCR

Products Recognition 介绍 商品识别,围绕在复杂的商场零售场景中,识别出货架图像中的商品信息。主要组成部分: 重复图像检测。【更新进度 4/10】 图像拼接。【更新进度 0/10】 目标检测。【更新进度 0/10】 商品识别。【更新进度 1/10】 OCR。【更新进度 1/10】

zhenjieWang 18 Jan 27, 2022
Kornia is a open source differentiable computer vision library for PyTorch.

Open Source Differentiable Computer Vision Library

kornia 7.6k Jan 06, 2023
This pyhton script converts a pdf to Image then using tesseract as OCR engine converts Image to Text

Script_Convertir_PDF_IMG_TXT Este script de pyhton convierte un pdf en Imagen luego utilizando tesseract como motor OCR convierte la Imagen a Texto. p

alebogado 1 Jan 27, 2022
Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition:

Multi-Type-TD-TSR Check it out on Source Code of our Paper: Multi-Type-TD-TSR Extracting Tables from Document Images using a Multi-stage Pipeline for

Pascal Fischer 178 Dec 27, 2022
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one

Project MONAI 344 Dec 23, 2022
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021