A PyTorch implementation of ECCV2018 Paper: TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

Overview

TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

A PyTorch implement of TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes (ECCV 2018) by Megvii

Paper

Comparison of different representations for text instances. (a) Axis-aligned rectangle. (b) Rotated rectangle. (c) Quadrangle. (d) TextSnake. Obviously, the proposed TextSnake representation is able to effectively and precisely describe the geometric properties, such as location, scale, and bending of curved text with perspective distortion, while the other representations (axis-aligned rectangle, rotated rectangle or quadrangle) struggle with giving accurate predictions in such cases.

Textsnake elements:

  • center point
  • tangent line
  • text region

Description

Generally, this code has following features:

  1. include complete training and inference code
  2. pure python version without extra compiling
  3. compatible with laste PyTorch version (write with pytroch 0.4.0)
  4. support TotalText and SynthText dataset

Getting Started

This repo includes the training code and inference demo of TextSnake, training and infercence can be simplely run with a few code.

Prerequisites

To run this repo successfully, it is highly recommanded with:

  • Linux (Ubuntu 16.04)
  • Python3.6
  • Anaconda3
  • NVIDIA GPU(with 8G or larger GPU memory for training, 2G for inference)

(I haven't test it on other Python version.)

  1. clone this repository
git clone https://github.com/princewang1994/TextSnake.pytorch.git
  1. python package can be installed with pip
$ cd $TEXTSNAKE_ROOT
$ pip install -r requirements.txt

Data preparation

Pretraining with SynthText

$ CUDA_VISIBLE_DEVICES=$GPUID python train.py synthtext_pretrain --dataset synth-text --viz --max_epoch 1 --batch_size 8

Training

Training model with given experiment name $EXPNAME

training from scratch:

$ EXPNAME=example
$ CUDA_VISIBLE_DEVICES=$GPUID python train.py $EXPNAME --viz

training with pretrained model(improved performance much)

$ EXPNAME=example
$ CUDA_VISIBLE_DEVICES=$GPUID python train.py example --viz --batch_size 8 --resume save/synthtext_pretrain/textsnake_vgg_0.pth

options:

  • exp_name: experiment name, used to identify different training processes
  • --viz: visualization toggle, output pictures are saved to ./vis by default

other options can be show by run python train.py -h

Running tests

Runing following command can generate demo on TotalText dataset (300 pictures), the result are save to ./vis by default

$ EXPNAME=example
$ CUDA_VISIBLE_DEVICES=$GPUID python eval_textsnake.py $EXPNAME --checkepoch 190

options:

  • exp_name: experiment name, used to identify different training process

other options can be show by run python train.py -h

Evaluation

Total-Text metric is included in dataset/total_text/Evaluation_Protocol/Python_scripts/Deteval.py, you should first modify the input_dir in Deteval.py and run following command for computing DetEval:

$ python dataset/total_text/Evaluation_Protocol/Python_scripts/Deteval.py $EXPNAME --tr 0.8 --tp 0.4

or

$ python dataset/total_text/Evaluation_Protocol/Python_scripts/Deteval.py $EXPNAME --tr 0.7 --tp 0.6

it will output metrics reports.

Pretrained Models

Download from links above and place pth file to the corresponding path(save/XXX/textsnake_vgg_XX.pth).

Performance

DetEval reporting

Following table reports DetEval metrics when we set vgg as the backbone(can be reproduced by using pertained model in Pretrained Model section):

tr=0.7 / tp=0.6(P|R|F1) tr=0.8 / tp=0.4(P|R|F1) FPS(On single 1080Ti)
expand / no merge 0.652 | 0.549 | 0.596 0.874 | 0.711 | 0.784 12.07
expand / merge 0.698 | 0.578 | 0.633 0.859 | 0.660 | 0.746 8.38
no expand / no merge 0.753 | 0.693 | 0.722 0.695 | 0.628 | 0.660 9.94
no expand / merge 0.747 | 0.677 | 0.710 0.691 | 0.602 | 0.643 11.05
reported on paper - 0.827 | 0.745 | 0.784

* expand denotes expanding radius by 0.3 times while post-processing

* merge denotes that merging overlapped instance while post-processing

Pure Inference

You can also run prediction on your own dataset without annotations:

  1. Download pretrained model and place .pth file to save/pretrained/textsnake_vgg_180.pth
  2. Run pure inference script as following:
$ EXPNAME=pretrained
$ CUDA_VISIBLE_DEVICES=$GPUID python demo.py $EXPNAME --checkepoch 180 --img_root /path/to/image

predicted result will be saved in output/$EXPNAME and visualization in vis/${EXPNAME}_deploy

Qualitative results

  • left: prediction/ground true
  • middle: text region(TR)
  • right: text center line(TCL)

What is comming

  • Pretraining with SynthText
  • Metric computing
  • Pretrained model upload
  • Pure inference script
  • More dataset suport: [ICDAR15, CTW1500]
  • Various backbone experiments

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgement

Owner
Prince Wang
I'm a CS graduate student from Zhejiang University
Prince Wang
huoyijie 1.2k Dec 29, 2022
A Screen Translator/OCR Translator made by using Python and Tesseract, the user interface are made using Tkinter. All code written in python.

About An OCR translator tool. Made by me by utilizing Tesseract, compiled to .exe using pyinstaller. I made this program to learn more about python. I

Fauzan F A 41 Dec 30, 2022
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
An application of high resolution GANs to dewarp images of perturbed documents

Docuwarp This project is focused on dewarping document images through the usage of pix2pixHD, a GAN that is useful for general image to image translat

Thomas Huang 97 Dec 25, 2022
7th place solution

SIIM-FISABIO-RSNA-COVID-19-Detection 7th place solution Validation: We used iterative-stratification with 5 folds (https://github.com/trent-b/iterativ

11 Jul 17, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Maze generator and solver with python

Procedural-Maze-Generator-Algorithms Check out my youtube channel : Auctux Ressources Thanks to Jamis Buck Book : Mazes for programmers Requirements P

Joseph 19 Dec 07, 2022
Image Smoothing and Blurring Using OpenCV

Image-Smoothing-and-Blurring-Using-OpenCV This repository contains codes for performing image smoothing and blurring using OpenCV. There are different

Happy N. Monday 3 Feb 15, 2022
A program that takes in the hand gesture displayed by the user and translates ASL.

Interactive-ASL-Recognition Using the framework mediapipe made by google, OpenCV library and through self teaching, I was able to create a program tha

Riddhi Bajaj 3 Nov 22, 2021
PianoVisuals - Create background videos synced with piano music using opencv

Steps Record piano video Use Neural Network to do body segmentation (video matti

Solbiati Alessandro 4 Jan 24, 2022
This project is basically to draw lines with your hand, using python, opencv, mediapipe.

Paint Opencv 📷 This project is basically to draw lines with your hand, using python, opencv, mediapipe. Screenshoots 📱 Tools ⚙️ Python Opencv Mediap

Williams Ismael Bobadilla Torres 3 Nov 17, 2021
nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex.

faceprocessor nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex. Tech faceprocessor uses a number of open source projec

NoFaceDB 3 Sep 06, 2021
An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Oriented Scene Text Detection

InceptText-Tensorflow An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Orien

GeorgeJoe 115 Dec 12, 2022
Camelot: PDF Table Extraction for Humans

Camelot: PDF Table Extraction for Humans Camelot is a Python library that makes it easy for anyone to extract tables from PDF files! Note: You can als

Atlan Technologies Pvt Ltd 3.3k Dec 31, 2022
OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Alan Tang 354 Dec 12, 2022
A machine learning software for extracting information from scholarly documents

GROBID GROBID documentation Visit the GROBID documentation for more detailed information. Summary GROBID (or Grobid, but not GroBid nor GroBiD) means

Patrice Lopez 1.9k Jan 08, 2023
(CVPR 2021) ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection

ST3D Code release for the paper ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection, CVPR 2021 Authors: Jihan Yang*, Shaoshu

CVMI Lab 224 Dec 28, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

Jia Research Lab 182 Dec 29, 2022
ocroseg - This is a deep learning model for page layout analysis / segmentation.

ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by

NVIDIA Research Projects 71 Dec 06, 2022
A list of hyperspectral image super-solution resources collected by Junjun Jiang

A list of hyperspectral image super-resolution resources collected by Junjun Jiang. If you find that important resources are not included, please feel free to contact me.

Junjun Jiang 301 Jan 05, 2023