[email protected]) Boosting Co-teaching with Compression Regularization for Label Noise | PythonRepo" /> [email protected]) Boosting Co-teaching with Compression Regularization for Label Noise | PythonRepo">

([email protected]) Boosting Co-teaching with Compression Regularization for Label Noise

Overview

Nested-Co-teaching

([email protected]) Pytorch implementation of paper "Boosting Co-teaching with Compression Regularization for Label Noise"

[PDF]

If our project is helpful for your research, please consider citing :

@inproceedings{chen2021boosting, 
	  title={Boosting Co-teaching with Compression Regularization for Label Noise}, 
	  author={Chen, Yingyi and Shen, Xi and Hu, Shell Xu and Suykens, Johan AK}, 
	  booktitle={CVPR Learning from Limited and Imperfect Data (L2ID) workshop}, 
	  year={2021} 
	}

Our model can be learnt in a single GPU GeForce GTX 1080Ti (12G), this code has been tested with Pytorch 1.7.1

Table of Content

1. Toy Results

The nested regularization allows us to learn ordered representation which would be useful to combat noisy label. In this toy example, we aim at learning a projection from X to Y with noisy pairs. By adding nested regularization, the most informative recontruction is stored in the first few channels.

Baseline, same MLP Nested200, 1st channel
gif gif
Nested200,first 10 channels Nested200, first 100 channels
gif gif

2. Results on Clothing1M and Animal

Clothing1M [Xiao et al., 2015]

  • We provide average accuracy as well as the standard deviation for three runs (%) on the test set of Clothing1M [Xiao et al., 2015]. Results with “*“ are either using a balanced subset or a balanced loss.
Methods [email protected] result_ref/download
CE 67.2 [Wei et al., 2020]
F-correction [Patrini et al., 2017] 68.9 [Wei et al., 2020]
Decoupling [Malach and Shalev-Shwartz, 2017] 68.5 [Wei et al., 2020]
Co-teaching [Han et al., 2018] 69.2 [Wei et al., 2020]
Co-teaching+ [Yu et al., 2019] 59.3 [Wei et al., 2020]
JoCoR [Wei et al., 2020] 70.3 --
JO [Tanaka et al., 2018] 72.2 --
Dropout* [Srivastava et al., 2014] 72.8 --
PENCIL* [Yi and Wu, 2019] 73.5 --
MLNT [Li et al., 2019] 73.5 --
PLC* [Zhang et al., 2021] 74.0 --
DivideMix* [Li et al., 2020] 74.8 --
Nested* (Ours) 73.1 ± 0.3 model
Nested + Co-teaching* (Ours) 74.9 ± 0.2 model

ANIMAL-10N [Song et al., 2019]

  • We provide test set accuracy (%) on ANIMAL-10N [Song et al., 2019]. We report average accuracy as well as the standard deviation for three runs.
Methods [email protected] result_ref/download
CE 79.4 ± 0.1 [Song et al., 2019]
Dropout [Srivastava et al., 2014] 81.3 ± 0.3 --
SELFIE [Song et al., 2019] 81.8 ± 0.1 --
PLC [Zhang et al., 2021] 83.4 ± 0.4 --
Nested (Ours) 81.3 ± 0.6 model
Nested + Co-teaching (Ours) 84.1 ± 0.1 model

3. Datasets

Clothing1M

To download Clothing1M dataset [Xiao et al., 2015], please refer to here. Once it is downloaded, put it into ./data/. The structure of the file should be:

./data/Clothing1M
├── noisy_train
├── clean_val
└── clean_test

Generate two random Clothing1M noisy subsets for training after unzipping :

cd data/
# generate two random subsets for training
python3 clothing1M_rand_subset.py --name noisy_rand_subtrain1 --data-dir ./Clothing1M/ --seed 123

python3 clothing1M_rand_subset.py --name noisy_rand_subtrain2 --data-dir ./Clothing1M/ --seed 321

Please refer to data/gen_data.sh for more details.

ANIMAL-10N

To download ANIMAL-10N dataset [Song et al., 2019], please refer to here. It includes one training and one test set. Once it is downloaded, put it into ./data/. The structure of the file should be:

./data/Animal10N/
├── train
└── test

4. Train

4.1. Stage One : Training Nested Dropout Networks

We first train two Nested Dropout networks separately to provide reliable base networks for the subsequent stage. You can run the training of this stage by :

  • For training networks on Clothing1M (ResNet-18). You can also train baseline/dropout networks for comparisons. More details are provided in nested/run_clothing1m.sh.
cd nested/ 
# train one Nested network
python3 train_resnet.py --train-dir ../data/Clothing1M/noisy_rand_subtrain1/ --val-dir ../data/Clothing1M/clean_val/ --dataset Clothing1M --arch resnet18 --lrSchedule 5 --lr 0.02 --nbEpoch 30 --batchsize 448 --nested 100 --pretrained --freeze-bn --out-dir ./checkpoints/Cloth1M_nested100_lr2e-2_bs448_freezeBN_imgnet_model1 --gpu 0
  • For training networks on ANIMAL-10N (VGG-19+BN). You can also train baseline/dropout networks for comparisons. More details are provided in nested/run_animal10n.sh.
cd nested/ 
python3 train_vgg.py --train-dir ../data/Animal10N/train/ --val-dir ../data/Animal10N/test/ --dataset Animal10N --arch vgg19-bn --lr-gamma 0.2 --batchsize 128 --warmUpIter 6000 --nested1 100 --nested2 100 --alter-train --out-dir ./checkpoints_animal10n/Animal10N_alter_nested100_100_vgg19bn_lr0.1_warm6000_bs128_model1 --gpu 0

4.2. Stage Two : Fine-tuning with Co-teaching

In this stage, the two trained networks are further fine-tuned with Co-teaching. You can run the training of this stage by :

  • For fine-tuning with Co-teaching on Clothing1M (ResNet-18) :
cd co_teaching_resnet/ 
python3 main.py --train-dir ../data/Clothing1M/noisy_rand_subtrain1/ --val-dir ../data/Clothing1M/clean_val/ --dataset Clothing1M --lrSchedule 5 --nGradual 0 --lr 0.002 --nbEpoch 30 --warmUpIter 0 --batchsize 448 --freeze-bn --forgetRate 0.3 --out-dir ./finetune_ckpt/Cloth1M_nested100_lr2e-3_bs448_freezeBN_fgr0.3_pre_nested100_100 --resumePthList ../nested/checkpoints/Cloth1M_nested100_lr2e-2_bs448_imgnet_freezeBN_model1_Acc0.735_K12 ../nested/checkpoints/Cloth1M_nested100_lr2e-2_bs448_imgnet_freezeBN_model2_Acc0.733_K15 --nested 100 --gpu 0

The two Nested ResNet-18 networks trained in stage one can be downloaded here: ckpt1, ckpt2. We also provide commands for training Co-teaching from scratch for comparisons in co_teaching_resnet/run_clothing1m.sh.

  • For fine-tuning with Co-teaching on ANIMAL-10N (VGG-19+BN) :
cd co_teaching_vgg/ 
python3 main.py --train-dir ../data/Animal10N/train/ --val-dir ../data/Animal10N/test/ --dataset Animal10N --arch vgg19-bn --lrSchedule 5 --nGradual 0 --lr 0.004 --nbEpoch 30 --warmUpIter 0 --batchsize 128 --freeze-bn --forgetRate 0.2 --out-dir ./finetune_ckpt/Animal10N_alter_nested100_lr4e-3_bs128_freezeBN_fgr0.2_pre_nested100_100_nested100_100 --resumePthList ../nested/checkpoints_animal10n/new_code_nested/Animal10N_alter_nested100_100_vgg19bn_lr0.1_warm6000_bs128_model1_Acc0.803_K14 ../nested/checkpoints_animal10n/new_code_nested/Animal10N_alter_nested100_100_vgg19bn_lr0.1_warm6000_bs128_model2_Acc0.811_K14 --nested1 100 --nested2 100 --alter-train --gpu 0

The two Nested VGG-19+BN networks trained in stage one can be downloaded here: ckpt1, ckpt2. We also provide commands for training Co-teaching from scratch for comparisons in co_teaching_vgg/run_animal10n.sh.

5. Evaluation

To evaluate models' ability of combating with label noise, we compute classification accuracy on a provided clean test set.

5.1. Stage One : Nested Dropout Networks

Evaluation of networks derived from stage one are provided here :

cd nested/ 
# for networks on 
python3 test.py --test-dir ../data/Clothing1M/clean_test/ --dataset Clothing1M --arch resnet18 --resumePthList ./checkpoints/Cloth1M_nested100_lr2e-2_bs448_imgnet_freezeBN_model1_Acc0.735_K12 --KList 12 --gpu 0

More details can be found in nested/run_test.sh. Note that "_K12" in the model's name denotes the index of the optimal K, and the optimal number of channels for the model is actually 13 (nb of optimal channels = index of channel + 1).

5.2. Stage Two : Fine-tuning Co-teaching Networks

Evaluation of networks derived from stage two are provided as follows.

  • Networks trained on Clothing1M:
cd co_teaching_resnet/ 
python3 test.py --test-dir ../data/Clothing1M/clean_test/ --dataset Clothing1M --arch resnet18 --resumePthList ./finetune_ckpt/Cloth1M_nested100_lr2e-3_bs448_freezeBN_fgr0.3_pre_nested100_100_model2_Acc0.749_K24 --KList 24 --gpu 0

More details can be found in co_teaching_resnet/run_test.sh.

  • Networks trained on ANIMAL-10N:
cd co_teaching_vgg/ 
python3 test.py --test-dir ../data/Animal10N/test/ --dataset Animal10N --resumePthList ./finetune_ckpt/Animal10N_nested100_lr4e-3_bs128_freezeBN_fgr0.2_pre_nested100_100_nested100_100_model1_Acc0.842_K12 --KList 12 --gpu 0

More details can be found in co_teaching_vgg/run_test.sh.

Just a script for detecting the lanes in any car game (not just gta 5) with specific resolution and road design ( very basic and limited )

GTA-5-Lane-detection Just a script for detecting the lanes in any car game (not just gta 5) with specific resolution and road design ( very basic and

Danciu Georgian 4 Aug 01, 2021
Code for the ACL2021 paper "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction"

CSCBLI Code for our ACL Findings 2021 paper, "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction". Require

Jinpeng Zhang 12 Oct 08, 2022
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023
A dataset handling library for computer vision datasets in LOST-fromat

A dataset handling library for computer vision datasets in LOST-fromat

8 Dec 15, 2022
This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

CVZone This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe librar

CVZone 648 Dec 30, 2022
Markup for note taking

Subtext: markup for note-taking Subtext is a text-based, block-oriented hypertext format. It is designed with note-taking in mind. It has a simple, pe

Gordon Brander 224 Jan 01, 2023
Distort a video using Seam Carving (video) and Vibrato effect (sound)

Distort videos Applies a Seam Carving algorithm (aka liquid rescale) on every frame of a video, and a vibrato effect on the audio to distort the video

AlexZeGamer 6 Dec 06, 2022
基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化

SimpleRPA 基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化 简介 SimpleRPA是一款python语言编写的开源RPA工具(桌面自动控制工具),用户可以通过配置yaml格式的文件,来实现桌面软件的自动化控制,简化繁杂重复的工作,比如运营人员给用户发消息,

Song Hui 7 Jun 26, 2022
Select range and every time the screen changes, OCR is activated.

ASOCR(Auto Screen OCR) Select range and every time you press Space key, OCR is activated. 範囲を選ぶと、あなたがスペースキーを押すたびに、画面が変わる度にOCRが起動します。 usage1: simple OC

1 Feb 13, 2022
Text page dewarping using a "cubic sheet" model

page_dewarp Page dewarping and thresholding using a "cubic sheet" model - see full writeup at https://mzucker.github.io/2016/08/15/page-dewarping.html

Matt Zucker 1.2k Dec 29, 2022
Write-ups for the SwissHackingChallenge2021 CTF.

SwissHackingChallenge 2021 : Write-ups This repository contains a collection of my write-ups for challenges solved during the SwissHackingChallenge (S

Julien Béguin 3 Jun 07, 2021
7th place solution

SIIM-FISABIO-RSNA-COVID-19-Detection 7th place solution Validation: We used iterative-stratification with 5 folds (https://github.com/trent-b/iterativ

11 Jul 17, 2022
color detection using python

colordetection color detection using python In this color detection Python project, we are going to build an application through which you can automat

Ruchith Kumar 1 Nov 04, 2021
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
A synthetic data generator for text recognition

TextRecognitionDataGenerator A synthetic data generator for text recognition What is it for? Generating text image samples to train an OCR software. N

Edouard Belval 2.5k Jan 04, 2023
Captcha Recognition

The objective of this project is to recognize the target numbers in the captcha images correctly which would tell us how good or bad a captcha system has been built.

Mohit Kaushik 5 Feb 20, 2022
Basic functions manipulating images using the OpenCV library

OpenCV Basic functions manipulating images using the OpenCV library. Reading Ima

Shatha Siala 3 Feb 17, 2022
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
Sort By Face

Sort-By-Face This is an application with which you can either sort all the pictures by faces from a corpus of photos or retrieve all your photos from

0 Nov 29, 2021