Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Overview

Total-Text-Dataset (Official site)

Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.)

Updated on March 19, 2020 (Query on the new groundtruth of test set)

Updated on Sept. 08, 2019 (New training groundtruth of Total-Text is now available)

Updated on Sept. 07, 2019 (Updated Guided Annotation toolbox for scene text image annotation)

Updated on Sept. 07, 2019 (Updated baseline as to our IJDAR)

Updated on August 01, 2019 (Extended version with new baseline + annotation tool is accepted at IJDAR)

Updated on May 30, 2019 (Important announcement on Total-Text vs. ArT dataset)

Updated on April 02, 2019 (Updated table ranking with default vs. our proposed DetEval)

Updated on March 31, 2019 (Faster version DetEval.py, support Python3. Thank you princewang1994.)

Updated on March 14, 2019 (Updated table ranking with evaluation protocol info.)

Updated on November 26, 2018 (Table ranking is included for reference.)

Updated on August 24, 2018 (Newly added Guided Annotation toolbox folder.)

Updated on May 15, 2018 (Added groundtruth in '.txt' format.)

Updated on May 14, 2018 (Added feature - 'Do not care' candidates filtering is now available in the latest python scripts.)

Updated on April 03, 2018 (Added pixel level groundtruth)

Updated on November 04, 2017 (Added text level groundtruth)

Released on October 27, 2017

News

  • We received some questions in regard to the new groundtruth for the test set of Total-Text. Here is an update. We do not release a new version of the test set groundtruth because

     1) there is no need of standardising the length of the groundtruth vertices for testing purpose, it was proposed to facilitate training only, and
     2) a new version of groundtruth would make the previous benchmarks irrelevant.
    

Do contact us if you think there is a valid reason to require the new groundtruth for the test set, we shall discuss about it.

  • TOTAL-TEXT is a word-level based English curve text dataset. If you are interested in text-line based dataset with both English and Chinese instances, we highly recommend you to refer SCUT-CTW1500. In addition, a Robust Reading Challenge on Arbitrary-Shaped Text (RRC-ArT), which is extended from Total-Text and SCUT-CTW1500, was held at ICDAR2019 to stimulate more innovative ideas on the arbitrary-shaped text reading task. Congratulations to all winners and challengers. The technical report of ArT can be found on at this https URL.

Important Announcement

Total-Text and SCUT-CTW1500 are now part of the training set of the largest curved text dataset - ArT (Arbitrary-Shaped Text dataset). In order to retain the validity of future benchmarking on Total-Text datasets, the test-set images of Total-Text should be removed (with the corresponding ID provided HERE) from the ArT dataset shall one intend to leverage the extra training data from the ArT dataset. We count on the trust of the research community to perform such removal operation to attain the fairness of the benchmarking.

Table Ranking

  • The results from recent papers on Total-Text dataset are listed below where P=Precision, R=Recall & F=F-score.
  • If your result is missing or incorrect, please do not hesisate to contact us.
  • The baseline scores are based on our proposed [Poly-FRCNN-3] in this folder.
  • *Pascal VOC IoU metric; **Polygon Regression

Detection Leaderboard

Method Reported
on paper
DetEval
(tp=0.4, tr=0.8)
(Default)
DetEval
(tp=0.6, tr=0.7)
(New Proposal)
Published at
P R F P R F P R F
Our Baseline [paper] 78.0 68.0 73.0 - - - 78.0 68.0 73.0 IJDAR2020
CRAFTS [paper] 89.5 85.4 87.4 - - - - - - ECCV2020
#ASTS_Weakly-ResNet101 (E2E) [paper] - - 87.3 - - - - - - TIP2020
TextFuseNet [paper] 89.0 85.3 87.1 - - - - - - IJCAI2020
#Boundary (E2E) [paper] 88.9 85.0 87.0 - - - - - - AAAI2020
PolyPRNet [paper] 88.1 85.3 86.7 - - - - - - ACCV2020
#Qin et al. (E2E) [paper] 87.8 85.0 86.4 - - - - - - ICCV2019
100%Poly [paper] 88.2 83.3 85.6 - - - - - - arXiv:2012
ContourNet [paper] 86.9 83.9 85.4 - - - - - - CVPR2020
#Text Perceptron (E2E) [paper] 88.8 81.8 85.2 - - - - - - AAAI2020
PAN-640 [paper] 89.3 81.0 85.0 - - - - - - ICCV2019
DB-ResNet50 (800) [paper] 87.1 82.5 84.7 - - - - - - AAAI2020
TextCohesion [paper] 88.1 81.4 84.6 - - - - - - arXiv:1904
Feng et al. [paper] 87.3 81.1 84.1 - - - - - - IJCV2020
ReLaText [paper] 84.8 83.1 84.0 - - - - - - arXiv:2003
CRAFT [paper] 87.6 79.9 83.6 - - - - - - CVPR2019
LOMO MS [paper] 87.6 79.3 83.3 - - - - - - CVPR2019
SPCNet [paper] 83.0 82.8 82.9 - - - - - - AAAI2019
#ABCNet (E2E) [paper] 85.4 80.1 82.7 - - - - - - CVPR2020
ICG [paper] 82.1 80.9 81.5 - - - - - - PR2019
FTSN [paper] *84.7 *78.0 *81.3 - - - - - - ICPR2018
PSENet-1s [paper] 84.02 77.96 80.87 - - - - - - CVPR2019
1TextField [paper] 81.2 79.9 80.6 76.1 75.1 75.6 83.0 82.0 82.5 TIP2019
#TextDragon (E2E) [paper] 85.6 75.7 80.3 - - - - - - ICCV2019
CSE [paper] 81.4
(**80.9)
79.7
(**80.3)
80.2
(**80.6)
- - - - - - CVPR2019
MSR [paper] 85.2 73.0 78.6 82.7 68.3 74.9 81.4 72.5 76.7 arXiv:1901
ATTR [paper] 80.9 76.2 78.5 - - - - - - CVPR2019
TextSnake [paper] 82.7 74.5 78.4 - - - - - - ECCV2018
1CTD [paper] 74.0 71.0 73.0 60.7 58.8 59.8 76.5 73.8 75.2 PR2019
#TextNet (E2E) [paper] 68.2 59.5 63.5 - - - - - - ACCV2018
#,2Mask TextSpotter (E2E) [paper] 69.0 55.0 61.3 68.9 62.5 65.5 82.5 75.2 78.6 ECCV2018
CENet [paper] 59.9 54.4 57.0 - - - - - - ACCV2018
#Textboxes (E2E) [paper] 62.1 45.5 52.5 - - - - - - AAAI2017
EAST [paper] 50.0 36.2 42.0 - - - - - - CVPR2017
SegLink [paper] 30.3 23.8 26.7 - - - - - - CVPR2017

Note:

# Framework that does end-to-end training (i.e. detection + recognition).

1For the results of TextField and CTD, the improved versions of their original paper were used, and this explains why the performance is better.

2For Mask-TextSpotter, the relatively poor performance reported in their paper was due to a bug in the input reading module (which was fixed recently). The authors were informed about this issue.

End-to-end Recognition Leaderboard
(None refers to recognition without any lexicon; Full lexicon contains all words in test set.)

Method Backbone None (%) Full (%) FPS Published at
CRAFTS [paper] ResNet50-FPN 78.7 - - ECCV2020
MANGO [paper] ResNet50-FPN 72.9 83.6 4.3 AAAI2021
Text Perceptron [paper] ResNet50-FPN 69.7 78.3 - AAAI2020
ABCNet-MS [paper] ResNet50-FPN 69.5 78.4 6.9 CVPR2020
CharNet H-88 MS [paper] ResNet50-Hourglass57 69.2 - 1.2 ICCV2019
Qin et al. [paper] ResNet50-MSF 67.8 - - ICCV2019
ASTS_Weakly [paper] ResNet101-FPN 65.3 84.2 2.5 TIP2020
Boundary [paper] ResNet50-FPN 65.0 76.1 - AAAI2020
ABCNet [paper] ResNet50-FPN 64.2 75.7 17.9 CVPR2020
CAPNet [paper] ResNet50-FPN 62.7 - - ICASSP2020
Feng et al. [paper] VGG 55.8 79.2 - IJCV2020
TextNet [paper] ResNet50-SAM 54.0 - 2.7 ACCV2018
Mask TextSpotter [paper] ResNet50-FPN 52.9 71.8 4.8 ECCV2018
TextDragon [paper] VGG16 48.8 74.8 - ICCV2019
Textboxes [paper] ResNet50-FPN 36.3 48.9 1.4 AAAI2017

Description

In order to facilitate a new text detection research, we introduce Total-Text dataset (IJDAR)(ICDAR-17 paper) (presentation slides), which is more comprehensive than the existing text datasets. The Total-Text consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Citation

If you find this dataset useful for your research, please cite

@article{CK2019,
  author    = {Chee Kheng Ch’ng and
               Chee Seng Chan and
               Chenglin Liu},
  title     = {Total-Text: Towards Orientation Robustness in Scene Text Detection},
  journal   = {International Journal on Document Analysis and Recognition (IJDAR)},
  volume    = {23},
  pages     = {31-52},
  year      = {2020},
  doi       = {10.1007/s10032-019-00334-z},
}

Feedback

Suggestions and opinions of this dataset (both positive and negative) are greatly welcome. Please contact the authors by sending email to chngcheekheng at gmail.com or cs.chan at um.edu.my.

License and Copyright

The project is open source under BSD-3 license (see the LICENSE file).

For commercial purpose usage, please contact Dr. Chee Seng Chan at cs.chan at um.edu.my

©2017-2020 Center of Image and Signal Processing, Faculty of Computer Science and Information Technology, University of Malaya.

Owner
Chee Seng Chan
Chee Seng Chan
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 30, 2022
An interactive document scanner built in Python using OpenCV

The scanner takes a poorly scanned image, finds the corners of the document, applies the perspective transformation to get a top-down view of the document, sharpens the image, and applies an adaptive

Kushal Shingote 1 Feb 12, 2022
Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Visual Behavior 86 Dec 28, 2022
CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)

CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu

Zhao,Xiaohui 147 Dec 20, 2022
PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector

Description This is a PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector. Only RBOX part is implemented. Using dice loss

365 Dec 20, 2022
The official code for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates".

SpeechDrivesTemplates The official repo for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates". [arxiv

Qian Shenhan 53 Dec 23, 2022
Fast style transfer

faststyle Faststyle aims to provide an easy and modular interface to Image to Image problems based on feature loss. Install Making sure you have a wor

Lucas Vazquez 21 Mar 11, 2022
This project modify tensorflow object detection api code to predict oriented bounding boxes. It can be used for scene text detection.

This is an oriented object detector based on tensorflow object detection API. Most of the code is not changed except for those related to the need of

Dafang He 30 Oct 22, 2022
OCR software for recognition of handwritten text

Handwriting OCR The project tries to create software for recognition of a handwritten text from photos (also for Czech language). It uses computer vis

Břetislav Hájek 562 Jan 03, 2023
Thresholding-and-masking-using-OpenCV - Image Thresholding is used for image segmentation

Image Thresholding is used for image segmentation. From a grayscale image, thresholding can be used to create binary images. In thresholding we pick a threshold T.

Grace Ugochi Nneji 3 Feb 15, 2022
An easy to use an (hopefully useful) captcha solution for pyTelegramBotAPI

pyTelegramBotCAPTCHA An easy to use and (hopefully useful) image CAPTCHA soltion for pyTelegramBotAPI. Installation: pip install pyTelegramBotCAPTCHA

29 Dec 26, 2022
A tool to enhance your old/damaged pictures built using python & opencv.

Breathe Life into your Old Pictures Table of Contents About The Project Getting Started Prerequisites Usage Contact Acknowledgments About The Project

Shah Anwaar Khalid 5 Dec 16, 2021
The code for “Oriented RepPoints for Aerail Object Detection”

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints”, Under review. (arXiv preprint) Introduction Or

WentongLi 207 Dec 24, 2022
Some Boring Research About Products Recognition 、Duplicate Img Detection、Img Stitch、OCR

Products Recognition 介绍 商品识别,围绕在复杂的商场零售场景中,识别出货架图像中的商品信息。主要组成部分: 重复图像检测。【更新进度 4/10】 图像拼接。【更新进度 0/10】 目标检测。【更新进度 0/10】 商品识别。【更新进度 1/10】 OCR。【更新进度 1/10】

zhenjieWang 18 Jan 27, 2022
The open source extract transaction infomation by using OCR.

Transaction OCR Mã nguồn trích xuất thông tin transaction từ file scaned pdf, ở đây tôi lựa chọn tài liệu sao kê công khai của Thuy Tien. Mã nguồn có

Nguyen Xuan Hung 18 Jun 02, 2022
This is the open source implementation of the ICLR2022 paper "StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis"

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image

Meta Research 840 Dec 26, 2022
Character Segmentation using TensorFlow

Character Segmentation Segment characters and spaces in one text line,from this paper Chinese English mixed Character Segmentation as Semantic Segment

26 Aug 25, 2022
A Python wrapper for the tesseract-ocr API

tesserocr A simple, Pillow-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR). tesserocr integrates directly with

Fayez 1.7k Dec 31, 2022
This is a real life mario project using python and mediapipe

real-life-mario This is a real life mario project using python and mediapipe How to run to run this just run - realMario.py file requirements This req

Programminghut 42 Dec 22, 2022
Train custom VR face tracking parameters

Pal Buddy Guy: The anipal's best friend This is a small script to improve upon the tracking capabilities of the Vive Pro Eye and facial tracker. You c

7 Dec 12, 2021