Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Overview

Dual Encoding for Video Retrieval by Text

Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

image

Table of Contents

Environments

  • Ubuntu 16.04
  • CUDA 10.1
  • Python 3.8
  • PyTorch 1.5.1

We used Anaconda to setup a deep learning workspace that supports PyTorch. Run the following script to install the required packages.

conda create --name ws_dual_py3 python=3.8
conda activate ws_dual_py3
git clone https://github.com/danieljf24/hybrid_space.git
cd hybrid_space
pip install -r requirements.txt
conda deactivate

Dual Encoding on MSRVTT10K

Required Data

Run the following script to download and extract MSR-VTT (msrvtt10k-resnext101_resnet152.tar.gz(4.3G)) dataset and a pre-trained word2vec (vec500flickr30m.tar.gz(3.0G). The data can also be downloaded from Baidu pan (url, password:p3p0) or Google drive (url). For more information about the dataset, please refer to here. The extracted data is placed in $HOME/VisualSearch/.

ROOTPATH=$HOME/VisualSearch
mkdir -p $ROOTPATH && cd $ROOTPATH

# download and extract dataset
wget http://8.210.46.84:8787/msrvtt10k-resnext101_resnet152.tar.gz
tar zxf msrvtt10k-resnext101_resnet152.tar.gz -C $ROOTPATH

# download and extract pre-trained word2vec
wget http://lixirong.net/data/w2vv-tmm2018/word2vec.tar.gz
tar zxf word2vec.tar.gz -C $ROOTPATH

Model Training and Evaluation

Run the following script to train and evaluate Dual Encoding network with hybrid space on the official partition of MSR-VTT. The video features are the concatenation of ResNeXt-101 and ResNet-152 features. The code of video feature extraction we used in the paper is available at here.

conda activate ws_dual_py3
./do_all.sh msrvtt10k hybrid resnext101-resnet152

Running the script will do the following things:

  1. Train Dual Encoding network with hybrid space and select a checkpoint that performs best on the validation set as the final model. Notice that we only save the best-performing checkpoint on the validation set to save disk space.
  2. Evaluate the final model on the test set. Note that the dataset has already included vocabulary and concept annotations. If you would like to generate vocabulary and concepts by yourself, run the script ./do_vocab_concept.sh msrvtt10k 1 $ROOTPATH.

If you would like to train Dual Encoding network with the latent space learning (Conference Version), please run the following scrip:

./do_all.sh msrvtt10k latent resnext101-resnet152 $ROOTPATH

To train the model on the Test1k-Miech partition and Test1k-Yu partition of MSR-VTT, please run the following scrip:

./do_all.sh msrvtt10kmiech hybrid resnext101-resnet152 $ROOTPATH
./do_all.sh msrvtt10kyu hybrid resnext101-resnet152 $ROOTPATH

Evaluation using Provided Checkpoints

The overview of pre-trained checkpoints on MSR-VTT is as follows.

Split Pre-trained Checkpoints
Official msrvtt10k_model_best.pth.tar(264M)
Test1k-Miech msrvtt10kmiech_model_best.pth.tar(267M)
Test1k-Yu msrvtt10kyu_model_best.pth.tar(267M)

Note that if you would like to evaluate using our trained checkpoints, please make sure to use the vocabulary and concept annotations that are provided in the msrvtt10k-resnext101_resnet152.tar.gz.

On the official split

Run the following script to download and evaluate our trained checkpoints on the official split of MSR-VTT. The trained checkpoints can also be downloaded from Baidu pan (url, password:p3p0).

MODELDIR=$HOME/VisualSearch/checkpoints
mkdir -p $MODELDIR

# download trained checkpoints
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/msrvtt10k_model_best.pth.tar

# evaluate on the official split of MSR-VTT
CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection msrvtt10k --logger_name $MODELDIR  --checkpoint_name msrvtt10k_model_best.pth.tar

On Test1k-Miech and Test1k-Yu splits

In order to evaluate on Test1k-Miech and Test1k-Yu splits, please run the following script.

MODELDIR=$HOME/VisualSearch/checkpoints

# download trained checkpoints on Test1k-Miech
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/msrvtt10kmiech_model_best.pth.tar

# evaluate on Test1k-Miech of MSR-VTT
CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection msrvtt10kmiech --logger_name $MODELDIR  --checkpoint_name msrvtt10kmiech_model_best.pth.tar
MODELDIR=$HOME/VisualSearch/checkpoints

# download trained checkpoints on Test1k-Yu
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/msrvtt10kyu_model_best.pth.tar

# evaluate on Test1k-Yu of MSR-VTT
CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection msrvtt10kyu --logger_name $MODELDIR  --checkpoint_name msrvtt10kyu_model_best.pth.tar

Expected Performance

The expected performance of Dual Encoding on MSR-VTT is as follows. Notice that due to random factors in SGD based training, the numbers differ slightly from those reported in the paper.

Split Text-to-Video Retrieval Video-to-Text Retrieval SumR
[email protected] [email protected] [email protected] MedR mAP [email protected] [email protected] [email protected] MedR mAP
Official 11.8 30.6 41.8 17 21.4 21.6 45.9 58.5 7 10.3 210.2
Test1k-Miech 22.7 50.2 63.1 5 35.6 24.7 52.3 64.2 5 37.2 277.2
Test1k-Yu 21.5 48.8 60.2 6 34.0 21.7 49.0 61.4 6 34.6 262.6

Dual Encoding on VATEX

Required Data

Download VATEX dataset (vatex-i3d.tar.gz(3.0G)) and a pre-trained word2vec (vec500flickr30m.tar.gz(3.0G)). The data can also be downloaded from Baidu pan (url, password:p3p0) or Google drive (url). For more information about the dataset, please refer to here. Please extract data into $HOME/VisualSearch/.

Model Training and Evaluation

Run the following script to train and evaluate Dual Encoding network with hybrid space on VATEX.

# download and extract dataset
wget http://8.210.46.84:8787/vatex-i3d.tar.gz
tar zxf vatex-i3d.tar.gz -C $ROOTPATH

./do_all.sh vatex hybrid i3d_kinetics $ROOTPATH

Expected Performance

Run the following script to download and evaluate our trained model (vatex_model_best.pth.tar(230M)) on VATEX.

MODELDIR=$HOME/VisualSearch/checkpoints

# download trained checkpoints
wegt -P $MODELDIR http://8.210.46.84:8787/checkpoints/vatex_model_best.pth.tar

CUDA_VISIBLE_DEVICES=0 python tester.py --testCollection vatex --logger_name $MODELDIR  --checkpoint_name vatex_model_best.pth.tar

The expected performance of Dual Encoding with hybrid space learning on MSR-VTT is as follows.

Split Text-to-Video Retrieval Video-to-Text Retrieval SumR
[email protected] [email protected] [email protected] MedR mAP [email protected] [email protected] [email protected] MedR mAP
VATEX 35.8 72.8 82.9 2 52.0 47.5 76.0 85.3 2 39.1 400.3

Dual Encoding on Ad-hoc Video Search (AVS)

Required Data

The following datasets are used for training, validation and testing: the joint collection of MSR-VTT and TGIF, tv2016train and IACC.3. For more information about these datasets, please refer to here.

Frame-level feature data

Please download the frame-level features from Baidu pan (url, password:qwlc). The filename of feature data are summarized as follows.

Datasets 2048-dim ResNeXt-101 2048-dim ResNet-152
MSR-VTT msrvtt10k_ResNext-101.tar.gz msrvtt10k_ResNet-152.tar.gz
TGIF tgif_ResNext-101.tar.gz tgif_ResNet-152.tar.gz
tv2016train tv2016train_ResNext-101.tar.gz tv2016train_ResNet-152.tar.gz
IACC.3 iacc.3_ResNext-101.tar.gz iacc.3_ResNet-152.tar.gz

Note if you have already download MSR-VTT data we provide above, you need not download msrvtt10k_ResNext-101.tar.gz and msrvtt10k_ResNet-152.tar.gz.

Sentence data

Please download the above data, and run the following scripts to extract them into $HOME/VisualSearch/.

ROOTPATH=$HOME/VisualSearch

# extract ResNext-101
tar zxf tgif_ResNext-101.tar.gz -C $ROOTPATH
tar zxf msrvtt10k_ResNext-101.tar.gz -C $ROOTPATH
tar zxf tv2016train_ResNext-101.tar.gz -C $ROOTPATH
tar zxf iacc.3_ResNext-101.tar.gz -C $ROOTPATH

# extract ResNet-152
tar zxf tgif_ResNet-152.tar.gz -C $ROOTPATH
tar zxf msrvtt10k_ResNet-152.tar -C $ROOTPATH
tar zxf tv2016train_ResNet-152.tar.gz -C $ROOTPATH
tar zxf iacc.3_ResNet-152.tar.gz -C $ROOTPATH

# combine feature of tgif and msrvtt10k
./do_combine_features.sh

Train Dual Encoding model from scratch

ROOTPATH=$HOME/VisualSearch
trainCollection=tgif-msrvtt10k
overwrite=0

# Generate a vocabulary on the training set
./util/do_get_vocab.sh $trainCollection $ROOTPATH $overwrite

# Generate concepts according to video captions
./util/do_get_tags.sh $trainCollection $ROOTPATH $overwrite

# Generate video frame info
visual_feature=resnext101-resnet152
./util/do_get_frameInfo.sh $trainCollection $visual_feature $ROOTPATH $overwrite

# training and testing
./do_all_avs.sh $ROOTPATH

How to run Dual Encoding on other datasets?

Our code supports dataset structure:

  • One-folder structure: train, validation and test subset are stored in a folder.
  • Multiple-folder structure: train, validation and test subset are stored in three folders respectively.

One-folder structure

Store the train, validation and test subset into a folder in the following structure.

${collection}
├── FeatureData
│   └── ${feature_name}
│       ├── feature.bin
│       ├── shape.txt
│       └── id.txt
└── TextData
    └── ${collection}train.caption.txt
    └── ${collection}val.caption.txt
    └── ${collection}test.caption.txt
  • FeatureData: video frame features. Using txt2bin.py to convert video frame feature in the required binary format.
  • ${collection}train.caption.txt: training caption data.
  • ${collection}val.caption.txt: validation caption data.
  • ${collection}test.caption.txt: test caption data. The file structure is as follows, in which the video and sent in the same line are relevant.
video_id_1#1 sentence_1
video_id_1#2 sentence_2
...
video_id_n#1 sentence_k
...

Please run the script to generate vocabulary and concepts:

./util/do_vocab_concept.sh $collection 0 $ROOTPATH

Run the following script to train and evaluate Dual Encoding on your own dataset:

./do_all.sh ${collection} hybrid ${feature_name} ${rootpath}

Multiple-folder structure

Store the training, validation and test subsets into three folders in the following structure respectively.

${subset_name}
├── FeatureData
│   └── ${feature_name}
│       ├── feature.bin
│       ├── shape.txt
│       └── id.txt
└── TextData
    └── ${subset_name}.caption.txt
  • FeatureData: video frame features.
  • ${dsubset_name}.caption.txt: caption data of corresponding subset.

You can run the following script to check whether the data is ready:

./do_format_check.sh ${train_set} ${val_set} ${test_set} ${rootpath} ${feature_name}

where train_set, val_set and test_set indicate the name of training, validation and test set, respectively, ${rootpath} denotes the path where datasets are saved and feature_name is the video frame feature name.

Please run the script to generate vocabulary and concepts:

./util/do_vocab_concept.sh ${train_set} 0 $ROOTPATH

If you pass the format check, use the following script to train and evaluate Dual Encoding on your own dataset:

./do_all_multifolder.sh ${train_set} ${val_set} ${test_set} hybrid ${feature_name} ${rootpath}

References

If you find the package useful, please consider citing our TPAMI'21 or CVPR'19 paper:

@article{dong2021dual,
  title={Dual Encoding for Video Retrieval by Text},
  author={Dong, Jianfeng and Li, Xirong and Xu, Chaoxi and Yang, Xun and Yang, Gang and Wang, Xun and Wang, Meng},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  doi = {10.1109/TPAMI.2021.3059295},
  year={2021}
}
@inproceedings{cvpr2019-dual-dong,
title = {Dual Encoding for Zero-Example Video Retrieval},
author = {Jianfeng Dong and Xirong Li and Chaoxi Xu and Shouling Ji and Yuan He and Gang Yang and Xun Wang},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019},
}
TextBoxes++: A Single-Shot Oriented Scene Text Detector

TextBoxes++: A Single-Shot Oriented Scene Text Detector Introduction This is an application for scene text detection (TextBoxes++) and recognition (CR

Minghui Liao 930 Jan 04, 2023
Code for paper "Role-based network embedding via structural features reconstruction with degree-regularized constraint"

Role-based network embedding via structural features reconstruction with degree-regularized constraint Train python main.py --dataset brazil-flights

wang zhang 1 Jun 28, 2022
CRAFT-Pyotorch:Character Region Awareness for Text Detection Reimplementation for Pytorch

CRAFT-Reimplementation Note:If you have any problems, please comment. Or you can join us weChat group. The QR code will update in issues #49 . Reimple

453 Dec 28, 2022
Repositório para registro de estudo da biblioteca opencv (Python)

OpenCV (Python) Objetivo do Repositório: Registrar avanços no estudo da biblioteca opencv. O repositório estará aberto a qualquer pessoa e há tambem u

1 Jun 14, 2022
A curated list of papers, code and resources pertaining to image composition

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

BCMI 391 Dec 30, 2022
Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Sign Language Recognition Service This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform s

Martin Lønne 1 Jan 08, 2022
A curated list of promising OCR resources

Call for contributor(paper summary,dataset generation,algorithm implementation and any other useful resources) awesome-ocr A curated list of promising

wanghaisheng 1.6k Jan 04, 2023
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
Generate text images for training deep learning ocr model

New version release:https://github.com/oh-my-ocr/text_renderer Text Renderer Generate text images for training deep learning OCR model (e.g. CRNN). Su

Qing 1.2k Jan 04, 2023
PSENet - Shape Robust Text Detection with Progressive Scale Expansion Network.

News Python3 implementations of PSENet [1], PAN [2] and PAN++ [3] are released at https://github.com/whai362/pan_pp.pytorch. [1] W. Wang, E. Xie, X. L

1.1k Dec 24, 2022
FOTS Pytorch Implementation

News!!! Recognition branch now is added into model. The whole project has beed optimized and refactored. ICDAR Dataset SynthText 800K Dataset detectio

Ning Lu 599 Dec 19, 2022
TedEval: A Fair Evaluation Metric for Scene Text Detectors

TedEval: A Fair Evaluation Metric for Scene Text Detectors Official Python 3 implementation of TedEval | paper | slides Chae Young Lee, Youngmin Baek,

Clova AI Research 167 Nov 20, 2022
Fine tuning keras-ocr python package with custom synthetic dataset from scratch

OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound

Eugene 1 Jan 05, 2022
A general list of resources to image text localization and recognition 场景文本位置感知与识别的论文资源与实现合集 シーンテキストの位置認識と識別のための論文リソースの要約

Scene Text Localization & Recognition Resources Read this institute-wise: English, 简体中文. Read this year-wise: English, 简体中文. Tags: [STL] (Scene Text L

Karl Lok (Zhaokai Luo) 901 Dec 11, 2022
天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 - 第三名解决方案

天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 比赛链接 个人博客记录 目录结构 ├── final------------------------------------决赛方案PPT ├── preliminary_contest--------------------

19 Aug 17, 2022
Python package for handwriting and sketching in Jupyter cells

ipysketch A Python package for handwriting and sketching in Jupyter notebooks. Usage A movie is worth a thousand pictures is worth a million words...

Matthias Baer 16 Jan 05, 2023
Generic framework for historical document processing

dhSegment dhSegment is a tool for Historical Document Processing. Its generic approach allows to segment regions and extract content from different ty

Digital Humanities Laboratory 343 Dec 24, 2022
A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.

A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.

tooraj taraz 3 Feb 10, 2022
An interactive document scanner built in Python using OpenCV

The scanner takes a poorly scanned image, finds the corners of the document, applies the perspective transformation to get a top-down view of the document, sharpens the image, and applies an adaptive

Kushal Shingote 1 Feb 12, 2022
This can be use to convert text in a file to handwritten text.

TextToHandwriting This can be used to convert text to handwriting. Clone this project or download the code. Run TextToImage.py give the filename of th

Ashutosh Mahapatra 2 Feb 06, 2022