TableBank: A Benchmark Dataset for Table Detection and Recognition

Overview

TableBank

TableBank is a new image-based table detection and recognition dataset built with novel weak supervision from Word and Latex documents on the internet, contains 417K high-quality labeled tables.

News

  • We release an official split for the train/val/test datasets and re-train both of the Table Detection and Table Structure Recognition models using Detectron2 and OpenNMT tools. The benchmark results, the MODEL ZOO, and the download link of TableBank have been updated.
  • A new benchmark dataset DocBank (Paper, Repo) is now available for document layout analysis
  • Our data can only be used for research purpose
  • Our paper has been accepted in LREC 2020

Introduction

To address the need for a standard open domain table benchmark dataset, we propose a novel weak supervision approach to automatically create the TableBank, which is orders of magnitude larger than existing human labeled datasets for table analysis. Distinct from traditional weakly supervised training set, our approach can obtain not only large scale but also high quality training data.

Nowadays, there are a great number of electronic documents on the web such as Microsoft Word (.docx) and Latex (.tex) files. These online documents contain mark-up tags for tables in their source code by nature. Intuitively, we can manipulate these source code by adding bounding box using the mark-up language within each document. For Word documents, the internal Office XML code can be modified where the borderline of each table is identified. For Latex documents, the tex code can be also modified where bounding boxes of tables are recognized. In this way, high-quality labeled data is created for a variety of domains such as business documents, official fillings, research papers etc, which is tremendously beneficial for large-scale table analysis tasks.

The TableBank dataset totally consists of 417,234 high quality labeled tables as well as their original documents in a variety of domains.

Statistics of TableBank

Based on the number of tables

Task Word Latex Word+Latex
Table detection 163,417 253,817 417,234
Table structure recognition 56,866 88,597 145,463

Based on the number of images

Task Word Latex Word+Latex
Table detection 78,399 200,183 278,582
Table structure recognition 56,866 88,597 145,463

Statistics on Train/Val/Test sets of Table Detection

Source Train Val Test
Latex 187199 7265 5719
Word 73383 2735 2281
Total 260582 10000 8000

Statistics on Train/Val/Test sets of Table Structure Recognition

Source Train Val Test
Latex 79486 6075 3036
Word 50977 3925 1964
Total 130463 10000 5000

License

TableBank is released under the Attribution-NonCommercial-NoDerivs License. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.

Task Definition

Table Detection

Table detection aims to locate tables using bounding boxes in a document. Given a document page in the image format, generating several bounding box that represents the location of tables in this page.

Table Structure Recognition

Table structure recognition aims to identify the row and column layout structure for the tables especially in non-digital document formats such as scanned images. Given a table in the image format, generating an HTML tag sequence that represents the arrangement of rows and columns as well as the type of table cells.

Baselines

To verify the effectiveness of Table-Bank, we build several strong baselines using the state-of-the-art models with end-to-end deep neural networks. The table detection model is based on the Faster R-CNN [Ren et al., 2015] architecture with different settings. The table structure recognition model is based on the encoder-decoder framework for image-to-text.

Data and Metrics

To evaluate table detection, we sample 18,000 document images from Word and Latex documents, where 10,000 images for validation and 8,000 images for testing. Each sampled image contains at least one table. Meanwhile, we also evaluate our model on the ICDAR 2013 dataset to verify the effectiveness of TableBank. To evaluate table structure recognition, we sample 15,000 table images from Word and Latex documents, where 10,000 images for validation and 5,000 images for testing. For table detection, we calculate the precision, recall and F1 in the way described in our paper, where the metrics for all documents are computed by summing up the area of overlap, prediction and ground truth. For table structure recognition, we use the 4-gram BLEU score as the evaluation metric with a single reference.

Table Detection

We use the open-source framework Detectron2 [Wu et al., 2019] to train models on the TableBank. Detectron2 is a high-quality and high-performance codebase for object detection research, which supports many state-of-the-art algorithms. In this task, we use the Faster R-CNN algorithm with the ResNeXt [Xie et al., 2016] as the backbone network architecture, where the parameters are pre-trained on the ImageNet dataset. All baselines are trained using 4 V100 NVIDIA GPUs using data-parallel sync SGD with a minibatch size of 20 images. For other parameters, we use the default values in Detectron2. During testing, the confidence threshold of generating bounding boxes is set to 90%.

Models Word Latex Word+Latex
Precision Recall F1 Precision Recall F1 Precision Recall F1
X101(Word) 0.9352 0.9398 0.9375 0.9905 0.5851 0.7356 0.9579 0.7474 0.8397
X152(Word) 0.9418 0.9415 0.9416 0.9912 0.6882 0.8124 0.9641 0.8041 0.8769
X101(Latex) 0.8453 0.9335 0.8872 0.9819 0.9799 0.9809 0.9159 0.9587 0.9368
X152(Latex) 0.8476 0.9264 0.8853 0.9816 0.9814 0.9815 0.9173 0.9562 0.9364
X101(Word+Latex) 0.9178 0.9363 0.9270 0.9827 0.9784 0.9806 0.9526 0.9592 0.9559
X152(Word+Latex) 0.9229 0.9266 0.9247 0.9837 0.9752 0.9795 0.9557 0.9530 0.9543

Table Structure Recognition

For table structure recognition, we use the open-source framework OpenNMT [Klein et al., 2017] to train the image-to-text model. OpenNMT is mainly designed for neural machine translation, which supports many encoder-decoder frameworks. In this task, we train our model using the image-to-text method in OpenNMT. The model is also trained using 4 V100 NVIDIA GPUs with the learning rate of 1 and batch size of 24. For other parameters, we use the default values in OpenNMT.

Models Word Latex Word+Latex
Image-to-Text (Word) 59.18 69.76 65.75
Image-to-Text (Latex) 51.45 71.63 63.08
Image-to-Text (Word+Latex) 69.93 77.94 74.54

Model Zoo

The trained models are available for download in the TableBank Model Zoo.

Get Data and Leaderboard

**Please DO NOT re-distribute our data.**

If you use the corpus in published work, please cite it referring to the "Paper and Citation" Section.

The annotations and original document pictures of the TableBank dataset can be download from the TableBank dataset homepage.

Paper and Citation

https://arxiv.org/abs/1903.01949

@misc{li2019tablebank,
    title={TableBank: A Benchmark Dataset for Table Detection and Recognition},
    author={Minghao Li and Lei Cui and Shaohan Huang and Furu Wei and Ming Zhou and Zhoujun Li},
    year={2019},
    eprint={1903.01949},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

References

  • [Ren et al., 2015] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time object detection with region proposal networks. CoRR, abs/1506.01497, 2015.
  • [Gilani et al., 2017] A. Gilani, S. R. Qasim, I. Malik, and F. Shafait. Table detection using deep learning. In Proc. of ICDAR 2017, volume 01, pages 771–776, Nov 2017.
  • [Wu et al., 2019] Y Wu, A Kirillov, F Massa, WY Lo, R Girshick. Detectron2[J]. 2019.
  • [Xie et al., 2016] Saining Xie, Ross B. Girshick, Piotr Doll´ar, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural networks. CoRR, abs/1611.05431, 2016.
  • [Klein et al., 2017] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M. Rush. Open-NMT: Open-source toolkit for neural machine translation. In Proc. of ACL, 2017.]
零样本学习测评基准,中文版

ZeroCLUE 零样本学习测评基准,中文版 零样本学习是AI识别方法之一。 简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别, 还可以对于来自未见过的类别的数据进行区分。 这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据, 很符合现

CLUE benchmark 27 Dec 10, 2022
OCR-D-compliant page segmentation

ocrd_segment This repository aims to provide a number of OCR-D-compliant processors for layout analysis and evaluation. Installation In your virtual e

OCR-D 59 Sep 10, 2022
PSENet - Shape Robust Text Detection with Progressive Scale Expansion Network.

News Python3 implementations of PSENet [1], PAN [2] and PAN++ [3] are released at https://github.com/whai362/pan_pp.pytorch. [1] W. Wang, E. Xie, X. L

1.1k Dec 24, 2022
BNF Globalization Code (CVPR 2016)

Boundary Neural Fields Globalization This is the code for Boundary Neural Fields globalization method. The technical report of the method can be found

25 Apr 15, 2022
Demo processor to illustrate OCR-D Python API

ocrd_vandalize/ Demo processor to illustrate the OCR-D/core Python API Description :TODO: write docs :) Installation From PyPI pip3 install ocrd_vanda

Konstantin Baierer 5 May 05, 2022
Using computer vision method to recognize and calcutate the features of the architecture.

building-feature-recognition In this repository, we accomplished building feature recognition using traditional/dl-assisted computer vision method. Th

4 Aug 11, 2022
Scan the MRZ code of a passport and extract the firstname, lastname, passport number, nationality, date of birth, expiration date and personal numer.

PassportScanner Works with 2 and 3 line identity documents. What is this With PassportScanner you can use your camera to scan the MRZ code of a passpo

Edwin Vermeer 441 Dec 24, 2022
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Sign Language Recognition Service This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform s

Martin Lønne 1 Jan 08, 2022
pulse2percept: A Python-based simulation framework for bionic vision

pulse2percept: A Python-based simulation framework for bionic vision Retinal degenerative diseases such as retinitis pigmentosa and macular degenerati

67 Dec 29, 2022
Source code of RRPN ---- Arbitrary-Oriented Scene Text Detection via Rotation Proposals

Paper source Arbitrary-Oriented Scene Text Detection via Rotation Proposals https://arxiv.org/abs/1703.01086 News We update RRPN in pytorch 1.0! View

428 Nov 22, 2022
Tracking the latest progress in Scene Text Detection and Recognition: Must-read papers well organized

SceneTextPapers Tracking the latest progress in Scene Text Detection and Recognition: must-read papers well organized Information about this repositor

Shangbang Long 763 Jan 01, 2023
Semantic-based Patch Detection for Binary Programs

PMatch Semantic-based Patch Detection for Binary Programs Requirement tensorflow-gpu 1.13.1 numpy 1.16.2 scikit-learn 0.20.3 ssdeep 3.4 Usage tar -xvz

Mr.Curiosity 3 Sep 02, 2022
Qrcode Attendence System with Opencv and Pyzbar

Setup process Creates a virtual environment (Scripts that ensure executed Python code uses the Python interpreter and site packages installed inside t

Ganesh 5 Aug 01, 2022
Read Japanese manga inside browser with selectable text.

mokuro Read Japanese manga with selectable text inside a browser. See demo: https://kha-white.github.io/manga-demo mokuro_demo.mp4 Demo contains excer

Maciej Budyś 170 Dec 27, 2022
Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight'

SSTDNet Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight' using pytorch. This code is work for general object detecti

HotaekHan 84 Jan 05, 2022
Table recognition inside douments using neural networks

TableTrainNet A simple project for training and testing table recognition in documents. This project was developed to make a neural network which reco

Giovanni Cavallin 93 Jul 24, 2022
scantailor - Scan Tailor is an interactive post-processing tool for scanned pages.

Scan Tailor - scantailor.org This project is no longer maintained, and has not been maintained for a while. About Scan Tailor is an interactive post-p

1.5k Dec 28, 2022
Controlling the computer volume with your hands // OpenCV

HandsControll-AI Controlling the computer volume with your hands // OpenCV Step 1 git clone https://github.com/Hayk-21/HandsControll-AI.git pip instal

Hayk 1 Nov 04, 2021