keras复现场景文本检测网络CPTN: 《Detecting Text in Natural Image with Connectionist Text Proposal Network》;欢迎试用,关注,并反馈问题...

Overview

keras-ctpn

[TOC]

  1. 说明
  2. 预测
  3. 训练
  4. 例子
    4.1 ICDAR2015
    4.1.1 带侧边细化
    4.1.2 不带带侧边细化
    4.1.3 做数据增广-水平翻转
    4.2 ICDAR2017
    4.3 其它数据集
  5. toDoList
  6. 总结

说明

​ 本工程是keras实现的CPTN: Detecting Text in Natural Image with Connectionist Text Proposal Network . 本工程实现主要参考了keras-faster-rcnn ; 并在ICDAR2015和ICDAR2017数据集上训练和测试。

​ 工程地址: keras-ctpn

​ cptn论文翻译:CTPN.md

效果

​ 使用ICDAR2015的1000张图像训练在500张测试集上结果为:Recall: 37.07 % Precision: 42.94 % Hmean: 39.79 %; 原文中的F值为61%;使用了额外的3000张图像训练。

关键点说明:

a.骨干网络使用的是resnet50

b.训练输入图像大小为720*720; 将图像的长边缩放到720,保持长宽比,短边padding;原文是短边600;预测时使用1024*1024

c.batch_size为4, 每张图像训练128个anchor,正负样本比为1:1;

d.分类、边框回归以及侧边细化的损失函数权重为1:1:1;原论文中是1:1:2

e.侧边细化与边框回归选择一样的正样本anchor;原文中应该是分开选择的

f.侧边细化还是有效果的(注:网上很多人说没有啥效果)

g.由于有双向GRU,水平翻转会影响效果(见样例做数据增广-水平翻转)

h.随机裁剪做数据增广,网络不收敛

预测

a. 工程下载

git clone https://github.com/yizt/keras-ctpn

b. 预训练模型下载

​ ICDAR2015训练集上训练好的模型下载地址: google drive百度云盘 取码:wm47

c.修改配置类config.py中如下属性

	WEIGHT_PATH = '/tmp/ctpn.h5'

d. 检测文本

python predict.py --image_path image_3.jpg

评估

a. 执行如下命令,并将输出的txt压缩为zip包

python evaluate.py --weight_path /tmp/ctpn.100.h5 --image_dir /opt/dataset/OCR/ICDAR_2015/test_images/ --output_dir /tmp/output_2015/

b. 提交在线评估 将压缩的zip包提交评估,评估地址:http://rrc.cvc.uab.es/?ch=4&com=mymethods&task=1

训练

a. 训练数据下载

#icdar2013
wget http://rrc.cvc.uab.es/downloads/Challenge2_Training_Task12_Images.zip
wget http://rrc.cvc.uab.es/downloads/Challenge2_Training_Task1_GT.zip
wget http://rrc.cvc.uab.es/downloads/Challenge2_Test_Task12_Images.zip
#icdar2015
wget http://rrc.cvc.uab.es/downloads/ch4_training_images.zip
wget http://rrc.cvc.uab.es/downloads/ch4_training_localization_transcription_gt.zip
wget http://rrc.cvc.uab.es/downloads/ch4_test_images.zip
#icdar2017
wget -c -t 0 http://datasets.cvc.uab.es/rrc/ch8_training_images_1~8.zip
wget -c -t 0 http://datasets.cvc.uab.es/rrc/ch8_training_localization_transcription_gt_v2.zip
wget -c -t 0 http://datasets.cvc.uab.es/rrc/ch8_test_images.zip

b. resnet50与训练模型下载

wget https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5

c. 修改配置类config.py中,如下属性

	# 预训练模型
    PRE_TRAINED_WEIGHT = '/opt/pretrained_model/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'

    # 数据集路径
    IMAGE_DIR = '/opt/dataset/OCR/ICDAR_2015/train_images'
    IMAGE_GT_DIR = '/opt/dataset/OCR/ICDAR_2015/train_gt'

d.训练

python train.py --epochs 50

例子

ICDAR2015

带侧边细化

不带侧边细化

做数据增广-水平翻转

ICDAR2017

其它数据集

toDoList

  1. 侧边细化(已完成)
  2. ICDAR2017数据集训练(已完成)
  3. 检测文本行坐标映射到原图(已完成)
  4. 精度评估(已完成)
  5. 侧边回归,限制在边框内(已完成)
  6. 增加水平翻转(已完成)
  7. 增加随机裁剪(已完成)

总结

  1. ctpn对水平文字检测效果不错
  2. 整个网络对于数据集很敏感;在2017上训练的模型到2015上测试效果很不好;同样2015训练的在2013上测试效果也很差
  3. 推测由于双向GRU,网络有存储记忆的缘故?在使用随机裁剪作数据增广时网络不收敛,使用水平翻转时预测结果也水平对称出现
Owner
mick.yi
keyword:数据挖掘,深度学习,计算机视觉
mick.yi
A buffered and threaded wrapper for the OpenCV VideoCapture object. Can speed up video decoding significantly. Supports

A buffered and threaded wrapper for the OpenCV VideoCapture object. Can speed up video decoding significantly. Supports "with"-syntax.

Patrice Matz 0 Oct 30, 2021
Code for paper "Role-based network embedding via structural features reconstruction with degree-regularized constraint"

Role-based network embedding via structural features reconstruction with degree-regularized constraint Train python main.py --dataset brazil-flights

wang zhang 1 Jun 28, 2022
APS 6º Semestre - UNIP (2021)

UNIP - Universidade Paulista Ciência da Computação (CC) DESENVOLVIMENTO DE UM SISTEMA COMPUTACIONAL PARA ANÁLISE E CLASSIFICAÇÃO DE FORMAS Link do git

Eduardo Talarico 5 Mar 09, 2022
Forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE

EAST_ICPR: EAST for ICPR MTWI 2018 CHALLENGE Introduction This is a repository forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE. Origin Reposi

Haozheng Li 157 Aug 23, 2022
Repositório para registro de estudo da biblioteca opencv (Python)

OpenCV (Python) Objetivo do Repositório: Registrar avanços no estudo da biblioteca opencv. O repositório estará aberto a qualquer pessoa e há tambem u

1 Jun 14, 2022
Dirty, ugly, and hopefully useful OCR of Facebook Papers docs released by Gizmodo

Quick and Dirty OCR of Facebook Papers Gizmodo has been working through the Facebook Papers and releasing the docs that they process and review. As lu

Bill Fitzgerald 2 Oct 28, 2021
Qrcode Attendence System with Opencv and Pyzbar

Setup process Creates a virtual environment (Scripts that ensure executed Python code uses the Python interpreter and site packages installed inside t

Ganesh 5 Aug 01, 2022
A Vietnamese personal card OCR website built with Django.

Django VietCardOCR Installation Creation of virtual environments is done by executing the command venv: python -m venv venv That will create a new fol

Truong Hoang Thuan 4 Sep 04, 2021
Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words.

Handwritten-Text-Recognition Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. T

27 Jan 08, 2023
A simple document layout analysis using Python-OpenCV

Run the application: python main.py *Note: For first time running the application, create a folder named "output". The application is a simple documen

Roinand Aguila 109 Dec 12, 2022
TableBank: A Benchmark Dataset for Table Detection and Recognition

TableBank TableBank is a new image-based table detection and recognition dataset built with novel weak supervision from Word and Latex documents on th

844 Jan 04, 2023
Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc.

EasyOCR Ready-to-use OCR with 80+ languages supported including Chinese, Japanese, Korean and Thai. What's new 1 February 2021 - Version 1.2.3 Add set

Jaided AI 16.7k Jan 03, 2023
list all open dataset about ocr.

ocr-open-dataset list all open dataset about ocr. printed dataset year Born-Digital Images (Web and Email) 2011-2015 COCO-Text 2017 Text Extraction fr

hongbomin 95 Nov 24, 2022
Creating a virtual tv using opencv in python3.

Virtual-TV Creating a virtual tv using opencv in python3. In order to run the code follow the below given steps: Make sure the desired videos which ar

Vamsi 1 Jan 01, 2022
Vietnamese Language Detection and Recognition

Table of Content Introduction (Khôi viết) Dataset (đổi link thui thành 3k5 ảnh mình) Getting Started (An Viết) Requirements Usage Example Training & E

6 May 27, 2022
基于Paddle框架的PSENet复现

PSENet-Paddle 基于Paddle框架的PSENet复现 本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 AIStudio链接 参考项目: whai362-PSENet 环境配置 本项目

QuanHao Guo 4 Apr 24, 2022
Convert PDF/Image to TXT using EasyOcr - the best OCR engine available!

PDFImage2TXT - DOWNLOAD INSTALLER HERE What can you do with it? Convert scanned PDFs to TXT. Convert scanned Documents to TXT. No coding required!! In

Hans Alemão 2 Feb 22, 2022
fishington.io bot with OpenCV and NumPy

fishington.io-bot fishington.io bot with using OpenCV and NumPy bot can continue to fishing fully automatically how to use Open cmd in fishington.io-b

Bahadır Araz 77 Jan 02, 2023
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
graph learning code for ogb

The final code for OGB Installation Requirements: ogb=1.3.1 torch=1.7.0 torch-geometric=1.7.0 torch-scatter=2.0.6 torch-sparse=0.6.9 Baseline models T

PierreHao 20 Nov 10, 2022