Tensorflow-based CNN+LSTM trained with CTC-loss for OCR

Overview

Overview

This collection demonstrates how to construct and train a deep, bidirectional stacked LSTM using CNN features as input with CTC loss to perform robust word recognition.

The model is a straightforward adaptation of Shi et al.'s CRNN architecture (arXiv:1507.0571). The provided code downloads and trains using Jaderberg et al.'s synthetic data (IJCV 2016), MJSynth.

Notably, the model achieves a lower test word error rate (1.82%) than CRNN when trained and tested on case-insensitive, closed vocabulary MJSynth data.

Written for Python 2.7. Requires TensorFlow >=1.10 (deprecation warnings exist for TF>1.10, but the code still works).

The model and subsequent experiments are more fully described in Weinman et al. (ICDAR 2019)

Structure

The model as built is a hybrid of Shi et al.'s CRNN architecture (arXiv:1507.0571) and the VGG deep convnet, which reduces the number of parameters by stacking pairs of small 3x3 kernels. In addition, the pooling is also limited in the horizontal direction to preserve resolution for character recognition. There must be at least one horizontal element per character.

Assuming one starts with a 32x32 image, the dimensions at each level of filtering are as follows:

Layer Op KrnSz Stride(v,h) OutDim H W PadOpt
1 Conv 3 1 64 30 30 valid
2 Conv 3 1 64 30 30 same
Pool 2 2 64 15 15
3 Conv 3 1 128 15 15 same
4 Conv 3 1 128 15 15 same
Pool 2 2,1 128 7 14
5 Conv 3 1 256 7 14 same
6 Conv 3 1 256 7 14 same
Pool 2 2,1 256 3 13
7 Conv 3 1 512 3 13 same
8 Conv 3 1 512 3 13 same
Pool 3 3,1 512 1 13
9 LSTM 512
10 LSTM 512

To accelerate training, a batch normalization layer is included before each pooling layer and ReLU non-linearities are used throughout. Other model details should be easily identifiable in the code.

The default training mechanism uses the ADAM optimizer with learning rate decay.

Differences from CRNN

Deeper early convolutions

The original CRNN uses a single 3x3 convolution in the first two conv/pool stages, while this network uses a paired sequence of 3x3 kernels. This change increases the theoretical receptive field of early stages of the network.

As a tradeoff, we omit the computationally expensive 2x2x512 final convolutional layer of CRNN. In its place, this network vertically max pools over the remaining three rows of features to collapse to a single 512-dimensional feature vector at each horizontal location.

The combination of these changes preserves the theoretical receptive field size of the final CNN layer, but reduces the number of convolution parameters to be learned by 15%.

Padding

Another important difference is the lack of zero-padding in the first convolutional layer, which can cause spurious strong filter responses around the border. By trimming the first convolution to valid regions, this model erodes the outermost pixel of values from the response filter maps (reducing height from 32 to 30 and reducing the width by two pixels).

This approach seems preferable to requiring the network to learn to ignore strong Conv1 responses near the image edge (presumably by weakening the power of filters in subsequent convolutional layers).

Batch normalization

We include batch normalization after each pair of convolutions (i.e., after layers 2, 4, 6, and 8 as numbered above). The CRNN does not include batch normalization after its first two convolutional stages. Our model therefore requires greater computation with an eye toward decreasing the number of training iterations required to reach converegence.

Subsampling/stride

The first two pooling stages of CRNN downsample the feature maps with a stride of two in both spatial dimensions. This model instead preserves sequence length by downsampling horizontally only after the first pooling stage.

Because the output feature map must have at least one timeslice per character predicted, overzealous downsampling can make it impossible to represent/predict sequences of very compact or narrow characters. Reducing the horizontal downsampling allows this model to recognize words in narrow fonts.

This increase in horizontal resolution does mean the LSTMs must capture more information. Hence this model uses 512 hidden units, rather than the 256 used by the CRNN. We found this larger number to be necessary for good performance.

Training

To completely train the model, you will need to download the mjsynth dataset and pack it into sharded TensorFlow records. Then you can start the training process, a tensorboard monitor, and an ongoing evaluation thread. The individual commands are packaged in the accompanying Makefile.

make mjsynth-download
make mjsynth-tfrecord
make train &
make monitor &
make test

To monitor training, point your web browser to the url (e.g., (http://127.0.1.1:8008)) given by the Tensorboard output.

Note that it may take 4-12 hours to download the complete mjsynth data set. A very small set (0.1%) of packaged example data is included; to run the small demo, skip the first two lines involving mjsynth.

With a GeForce GTX 1080, the demo takes about 20 minutes for the validation character error to reach 45% (using the default parameters); at one hour (roughly 7000 iterations), the validation error is just over 20%.

With the full training data, by one million iterations the model typically converges to around 5% training character error and 27.5% word error.

Checkpoints

Pre-trained model checkpoints at DOI:11084/23328 are used to produce results in the following paper:

Weinman, J. et al. (2019) Deep Neural Networks for Text Detection and Recognition in Historical Maps. In Proc. ICDAR.

Testing

The evaluate script (src/evaluate.py) streams statistics for one batch of validation (or evaluation) data. It prints the iteration, evaluation batch loss, label error (percentage of characters predicted incorrectly), and the sequence error (percentage of words—entire sequences—predicted incorrectly).

The test script (src/test.py) tallies statistics, finally normalizing for all data. It prints the loss, label error, total number of labels, sequence error, total number of sequences, and the label error rate and sequence error rate.

Validation

To see the output of a small set of instances, the validation script (src/validation.py) allows you to load a model and read an image one at a time via the process's standard input and print the decoded output for each. For example

cd src ; python validate.py < ~/paths_to_images.txt

Alternatively, you can run the program interactively by typing image paths in the terminal (one per line, type Control-D when you want the model to run the input entered so far).

Configuration

There are many command-line options to configure training parameters. Run train.py or test.py with the --help flag to see them or inspect the scripts. Model parameters are not command-line configurable and need to be edited in the code (see src/model.py).

Dynamic training data

Dynamic data can be used for training or testing by setting the --nostatic_data flag.

You can use the --ipc_synth boolean flag [default=True] to determine whether to use single-threaded or a buffered, multiprocess synthesis.

The --synth_config_file flag must be given with --nostatic_data.

The MapTextSynthesizer library supports training with dynamically synthesized data. The relevant code can be found within MapTextSynthesizer/tensorflow/generator

Using a lexicon

By default, recognition occurs in "open vocabulary" mode. That is, the system observes no constraints on producing the resulting output strings. However, it also has a "closed vocabulary" mode that can efficiently limit output to a given word list as well as a "mixed vocabulary" mode that can produce either a vocabulary word from a given word list (lexicon) or a non-vocabulary word, depending on the value of a prior bias for lexicon words.

Using the closed or mixed vocabulary modes requires additional software. This repository is connected with a fork of Harald Scheidl's CTCWordBeamSearch, obtainable as follows:

git clone https://github.com/weinman/CTCWordBeamSearch
cd CTCWordBeamSearch
git checkout var_seq_len

Then follow the build instructions, which may be as simple as running

cd cpp/proj
./buildTF.sh

To use, make sure CTCWordBeamSearch/cpp/proj (the directory containing TFWordBeamSearch.so) is in the LD_LIBRARY_PATH when running test.py or validate.py (in this repository).

API Notes

This version uses the TensorFlow (v1.14) Dataset for fast I/O. Training, testing, validation, and prediction use a custom Estimator.

Citing this work

Please cite the following paper if you use this code in your own research work:

@inproceedings{ weinman19deep,
    author = {Jerod Weinman and Ziwen Chen and Ben Gafford and Nathan Gifford and Abyaya Lamsal and Liam Niehus-Staab},
    title = {Deep Neural Networks for Text Detection and Recognition in Historical Maps},
    booktitle = {Proc. IAPR International Conference on Document Analysis and Recognition},
    month = {Sep.},
    year = {2019},
    location = {Sydney, Australia},
    doi = {10.1109/ICDAR.2019.00149}
} 

Acknowledgment

This work was supported in part by the National Science Foundation under grant Grant Number 1526350.

Owner
Jerod Weinman
Associate Professor of Computer Science
Jerod Weinman
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 04, 2023
[ICCV, 2021] Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks

Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks This is an official PyTorch code repository of the paper "Cloud Transformers:

Visual Understanding Lab @ Samsung AI Center Moscow 27 Dec 15, 2022
Image Detector and Convertor App created using python's Pillow, OpenCV, cvlib, numpy and streamlit packages.

Image Detector and Convertor App created using python's Pillow, OpenCV, cvlib, numpy and streamlit packages.

Siva Prakash 11 Jan 02, 2022
Document Layout Analysis Projects

Layout_Analysis Introduction This is an implementation of RLSA and X-Y Cut with OpenCV Dependencies OpenCV 3.0+ How to use Compile with g++ : g++ -std

22 Dec 08, 2022
Text page dewarping using a "cubic sheet" model

page_dewarp Page dewarping and thresholding using a "cubic sheet" model - see full writeup at https://mzucker.github.io/2016/08/15/page-dewarping.html

Matt Zucker 1.2k Dec 29, 2022
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.

LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which

162 Jan 05, 2023
An interactive interface for using OpenCV's GrabCut algorithm for image segmentation.

Interactive GrabCut An interactive interface for using OpenCV's GrabCut algorithm for image segmentation. Setup Install dependencies: pip install nump

Jason Y. Zhang 16 Oct 10, 2022
【Auto】原神⭐钓鱼辅助工具 | 自动收竿、校准游标 | ✨您只需要抛出鱼竿,我们会帮你完成一切✨

原神钓鱼辅助工具 ✨ 作者正在努力重构代码中……会尽快带给大家一个更完美的脚本 ✨ 「您只需抛出鱼竿,然后我们会帮您搞定一切」 如果你觉得这个脚本好用,请点一个 Star ⭐ ,你的 Star 就是作者更新最大的动力 点击这里 查看演示视频 ✨ 欢迎大家在 Issues 中分享自己的配置文件 ✨ ✨

261 Jan 02, 2023
A Python script to capture images from multiple webcams at once and save them into your local machine

Capturing multiple images at once from Webcam Using OpenCV Capture multiple image by accessing the webcam of your system and save it to your machine.

Fazal ur Rehman 2 Apr 16, 2022
BNF Globalization Code (CVPR 2016)

Boundary Neural Fields Globalization This is the code for Boundary Neural Fields globalization method. The technical report of the method can be found

25 Apr 15, 2022
👄 The most accurate natural language detection library for Java and the JVM, suitable for long and short text alike

Quick Info this library tries to solve language detection of very short words and phrases, even shorter than tweets makes use of both statistical and

Peter M. Stahl 532 Dec 28, 2022
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched

OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf # it's a scriptable c

jbarlow83 7.9k Jan 03, 2023
Using computer vision method to recognize and calcutate the features of the architecture.

building-feature-recognition In this repository, we accomplished building feature recognition using traditional/dl-assisted computer vision method. Th

4 Aug 11, 2022
BoxToolBox is a simple python application built around the openCV library

BoxToolBox is a simple python application built around the openCV library. It is not a full featured application to guide you through the w

František Horínek 1 Nov 12, 2021
Text modding tools for FF7R (Final Fantasy VII Remake)

FF7R_text_mod_tools Subtitle modding tools for FF7R (Final Fantasy VII Remake) There are 3 tools I made. make_dualsub_mod.exe: Merges (or swaps) subti

10 Dec 19, 2022
Handwritten Text Recognition (HTR) using TensorFlow 2.x

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR data

Arthur Flôr 160 Dec 21, 2022
Tesseract Open Source OCR Engine (main repository)

Tesseract OCR About This package contains an OCR engine - libtesseract and a command line program - tesseract. Tesseract 4 adds a new neural net (LSTM

48.4k Jan 09, 2023
Automatic Number Plate Recognition (ANPR) is a highly accurate system capable of reading vehicle number plates without human intervention

ANPR ANPR is therefore the underlying technology used to find a vehicle license/number plate and it, in turn, supplies this information to a next stag

Melih Emin Kılıçoğlu 1 Jan 09, 2022
Dirty, ugly, and hopefully useful OCR of Facebook Papers docs released by Gizmodo

Quick and Dirty OCR of Facebook Papers Gizmodo has been working through the Facebook Papers and releasing the docs that they process and review. As lu

Bill Fitzgerald 2 Oct 28, 2021
Natural language detection

Detect the language of text. What’s so cool about franc? franc can support more languages(†) than any other library franc is packaged with support for

Titus 3.8k Jan 02, 2023