Pixie - A full-featured 2D graphics library for Python

Overview

Pixie - A full-featured 2D graphics library for Python

Pixie is a 2D graphics library similar to Cairo and Skia.

Github Actions

pip install pixie-python

Features:

  • Typesetting and rasterizing text, including styled rich text via spans.
  • Drawing paths, shapes and curves with even-odd and non-zero windings.
  • Pixel-perfect AA quality.
  • Supported file formats are PNG, BMP, JPG, SVG + more in development.
  • Strokes with joins and caps.
  • Shadows, glows and blurs.
  • Complex masking: Subtract, Intersect, Exclude.
  • Complex blends: Darken, Multiply, Color Dodge, Hue, Luminosity... etc.
  • Many operations are SIMD accelerated.

Image file formats

Format Read Write
PNG
JPEG
BMP
GIF
SVG

Font file formats

Format Read
TTF
OTF
SVG

Joins and caps

Supported Caps:

  • Butt
  • Round
  • Square

Supported Joins:

  • Miter (with miter angle limit)
  • Bevel
  • Round

Blending & masking

Supported Blend Modes:

  • Normal
  • Darken
  • Multiply
  • ColorBurn
  • Lighten
  • Screen
  • Color Dodge
  • Overlay
  • Soft Light
  • Hard Light
  • Difference
  • Exclusion
  • Hue
  • Saturation
  • Color
  • Luminosity

Supported Mask Modes:

  • Mask
  • Overwrite
  • Subtract Mask
  • Intersect Mask
  • Exclude Mask

SVG style paths:

Format Supported Description
M m move to
L l line to
h h horizontal line to
V v vertical line to
C c S s cublic to
Q q T t quadratic to
A a arc to
z close path

Testing

pytest

Examples

git clone https://github.com/treeform/pixie-python to run examples.

Text

python examples/text.py

font = pixie.read_font("examples/data/Roboto-Regular_1.ttf")
font.size = 20

text = "Typesetting is the arrangement and composition of text in graphic design and publishing in both digital and traditional medias."

image.fill_text(
    font,
    text,
    bounds = pixie.Vector2(180, 180),
    transform = pixie.translate(10, 10)
)

example output

Text spans

python examples/text_spans.py

typeface = pixie.read_typeface("examples/data/Ubuntu-Regular_1.ttf")

def make_font(typeface, size, color):
    font = typeface.new_font()
    font.size = size
    font.paints[0].color = color
    return font

spans = pixie.SeqSpan()
spans.append(pixie.Span(
    "verb [with object] ",
    make_font(typeface, 12, pixie.Color(0.78125, 0.78125, 0.78125, 1))
))
spans.append(pixie.Span(
    "strallow\n",
    make_font(typeface, 36, pixie.Color(0, 0, 0, 1))
))
spans.append(pixie.Span(
    "\nstral·low\n",
    make_font(typeface, 13, pixie.Color(0, 0.5, 0.953125, 1))
))
spans.append(pixie.Span(
    "\n1. free (something) from restrictive restrictions \"the regulations are intended to strallow changes in public policy\" ",
    make_font(typeface, 14, pixie.Color(0.3125, 0.3125, 0.3125, 1))
))

image.arrangement_fill_text(
    spans.typeset(bounds = pixie.Vector2(180, 180)),
    transform = pixie.translate(10, 10)
)

example output

Square

python examples/square.py

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.Color(1, 0, 0, 1)

ctx = image.new_context()
ctx.fill_style = paint

ctx.fill_rect(50, 50, 100, 100)

example output

Line

python examples/line.py

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.parse_color("#FF5C00")

ctx = image.new_context()
ctx.stroke_style = paint
ctx.line_width = 10

ctx.stroke_segment(25, 25, 175, 175)

example output

Rounded rectangle

python examples/rounded_rectangle.py

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.Color(0, 1, 0, 1)

ctx = image.new_context()
ctx.fill_style = paint
ctx.rounded_rect(50, 50, 100, 100, 25, 25, 25, 25)
ctx.fill()

example output

Heart

python examples/heart.py

path = pixie.parse_path(
    """
    M 20 60
    A 40 40 90 0 1 100 60
    A 40 40 90 0 1 180 60
    Q 180 120 100 180
    Q 20 120 20 60
    z
    """
)

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.parse_color("#FC427B")

image.fill_path(path, paint)

example output

Masking

python examples/masking.py

lines = pixie.Image(200, 200)
lines.fill(pixie.parse_color("#FC427B"))

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.parse_color("#F8D1DD")

ctx = lines.new_context()
ctx.stroke_style = paint
ctx.line_width = 30

ctx.stroke_segment(25, 25, 175, 175)
ctx.stroke_segment(25, 175, 175, 25)

path = pixie.parse_path(
    """
    M 20 60
    A 40 40 90 0 1 100 60
    A 40 40 90 0 1 180 60
    Q 180 120 100 180
    Q 20 120 20 60
    z
    """
)

mask = pixie.Mask(200, 200)
mask.fill_path(path)

lines.mask_draw(mask)
image.draw(lines)

example output

Gradient

python examples/gradient.py

paint = pixie.Paint(pixie.PK_GRADIENT_RADIAL)

paint.gradient_handle_positions.append(pixie.Vector2(100, 100))
paint.gradient_handle_positions.append(pixie.Vector2(200, 100))
paint.gradient_handle_positions.append(pixie.Vector2(100, 200))

paint.gradient_stops.append(pixie.ColorStop(pixie.Color(1, 0, 0, 1), 0))
paint.gradient_stops.append(pixie.ColorStop(pixie.Color(1, 0, 0, 0.15625), 1))

path = pixie.parse_path(
    """
    M 20 60
    A 40 40 90 0 1 100 60
    A 40 40 90 0 1 180 60
    Q 180 120 100 180
    Q 20 120 20 60
    z
    """
)

image.fill_path(path, paint)

example output

Image tiled

python examples/image_tiled.py

path = pixie.Path()
path.polygon(100, 100, 70, 8)

paint = pixie.Paint(pixie.PK_IMAGE_TILED)
paint.image = pixie.read_image("examples/data/baboon.png")
paint.image_mat = pixie.scale(0.08, 0.08)

image.fill_path(path, paint)

example output

Shadow

python examples/shadow.py

path = pixie.Path()
path.polygon(100, 100, 70, sides = 8)

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.Color(1, 1, 1, 1)

polygon_image = pixie.Image(200, 200)
polygon_image.fill_path(path, paint)

shadow = polygon_image.shadow(
    offset = pixie.Vector2(2, 2),
    spread = 2,
    blur = 10,
    color = pixie.Color(0, 0, 0, 0.78125)
)

image.draw(shadow)
image.draw(polygon_image)

example output

Blur

python examples/blur.py

trees = pixie.read_image("examples/data/trees.png")

path = pixie.Path()
path.polygon(100, 100, 70, 6)

mask = pixie.Mask(200, 200)
mask.fill_path(path)

blur = trees.copy()
blur.blur(20)
blur.mask_draw(mask)

image.draw(trees)
image.draw(blur)

example output

Tiger

python examples/tiger.py

tiger = pixie.read_image("examples/data/tiger.svg")

image.draw(
    tiger,
    pixie.translate(100, 100) *
    pixie.scale(0.2, 0.2) *
    pixie.translate(-450, -450)
)

example output

Comments
  • Having some trouble with vertical alignment

    Having some trouble with vertical alignment

    I'm trying to have some text with two lines, aligned to the bottom of some bounds, and with a small line-height so that the two lines are closer together. However the text is not going where I would expect. It looks like it's going too downwards. When aligned to bottom it even goes outside the bounds. If I leave the line-height to default it also doesn't look right. Am I missing something?

    Here's an example and it's output:

    import pixie
    
    image = pixie.Image(800, 800)
    image.fill(pixie.Color(1, 1, 1, 1))
    
    paint = pixie.Paint(pixie.PK_SOLID)
    paint.color = pixie.Color(1, 0, 0, 1)
    ctx = image.new_context()
    ctx.line_width = 1
    ctx.stroke_style = paint
    ctx.stroke_rect(0, 266, 800, 318)
    
    text = "AbCd\naBcD"
    
    font = pixie.read_font("./Inter-Bold.otf")
    font.size = 182
    font.line_height = 140
    
    font.paint.color = pixie.Color(1, 0, 0, 1)
    image.fill_text(
        font,
        text,
        bounds = pixie.Vector2(800, 318),
        h_align = pixie.HA_CENTER,
        v_align = pixie.VA_TOP,
        transform = pixie.translate(0, 266)
    )
    
    font.paint.color = pixie.Color(0, 1, 0, 1)
    image.fill_text(
        font,
        text,
        bounds = pixie.Vector2(800, 318),
        h_align = pixie.HA_CENTER,
        v_align = pixie.VA_MIDDLE,
        transform = pixie.translate(0, 266)
    )
    
    font.paint.color = pixie.Color(0, 0, 1, 1)
    image.fill_text(
        font,
        text,
        bounds = pixie.Vector2(800, 318),
        h_align = pixie.HA_CENTER,
        v_align = pixie.VA_BOTTOM,
        transform = pixie.translate(0, 266)
    )
    
    image.write_file("out.png")
    

    result

    opened by EnricoMonese 4
  • Unable to load jpg on Linux

    Unable to load jpg on Linux

    Installed pixie-python via pip, however when I try to load a JPG I get the following exception.

    Exception has occurred: PixieError
    Decoding JPG requires -d:pixieUseStb
    

    I guess pixie is using std image library under the hood and the package did not get compiled with the correct options to support this?

    opened by EdMUK 3
  • genny supporting dart ffi

    genny supporting dart ffi

    Hi treeform, very nice lib (looking at the python output), I have recently discovered Flutter over dart language, they create a nice vibrant UI experience. BUT:

    its ffi lib is just so ugly, shudders! it's ffi interop is very verbose and looks annoying to get done, at the same time, devs seem to flock to this (relatively) new platform but not many want to get hands dirty in C code, so Nim to the rescue right?

    Can genny also support the dart programming language? it's just generating a lot of ugly boilerplate code.

    I think it's a chance to get more people to use Nim, and thereby building more libs and contributing to it, which was one of your purposes with genny.

    Aside from that, I personally want to leverage Nim libraries that i and others have written, and use dart and flutter mainly for the GUI story (though in terms of features, dart looks to be a decent language. unfortunately for dart, in terms of syntax - verbose like java and I think no templates, but this is just first impressions.)

    opened by kobi2187 2
  • support encodeImage method

    support encodeImage method

    I see there is an encodeImage proc in the nim library, would it be possible to support that as well as the already existing write_file() in the python layer?

    https://nimdocs.com/treeform/pixie/pixie.html#encodeImage%2CImage%2CFileFormat

    opened by RobBrazier 2
  • OSError: /lib/x86_64-linux-gnu/libm.so.6: version `GLIBC_2.29' not found on Google Colab

    OSError: /lib/x86_64-linux-gnu/libm.so.6: version `GLIBC_2.29' not found on Google Colab

    import pixie gives error:

    ---------------------------------------------------------------------------
    
    OSError                                   Traceback (most recent call last)
    
    <ipython-input-14-4833f4429f21> in <module>()
    ----> 1 import pixie
          2 
          3 
    
    3 frames
    
    /usr/lib/python3.7/ctypes/__init__.py in __init__(self, name, mode, handle, use_errno, use_last_error)
        362 
        363         if handle is None:
    --> 364             self._handle = _dlopen(self._name, mode)
        365         else:
        366             self._handle = handle
    
    OSError: /lib/x86_64-linux-gnu/libm.so.6: version `GLIBC_2.29' not found (required by /usr/local/lib/python3.7/dist-packages/pixie/libpixie.so)
    

    https://i.imgur.com/N1ue3Ce.png

    opened by arye321 2
  • module 'pixie' has no attribute 'PK_SOLID'

    module 'pixie' has no attribute 'PK_SOLID'

    This is the source code:

    import pixie
    
    image = pixie.Image(200, 200)
    image.fill(pixie.Color(1, 1, 1, 1))
    
    paint = pixie.Paint(pixie.PK_SOLID)
    paint.color = pixie.Color(1, 0, 0, 1)
    
    ctx = image.new_context()
    ctx.fill_style = paint
    
    ctx.fill_rect(50, 50, 100, 100)
    
    image.write_file("examples/square.png")
    

    I got the following results: Traceback (most recent call last): File "F:\Python\Python Project\Test\test.py", line 6, in paint = pixie.Paint(pixie.PK_SOLID) AttributeError: module 'pixie' has no attribute 'PK_SOLID'

    opened by ZaneHuangPro 1
  • Request: Text h_align = pixie.JUSTIFY_ALIGN

    Request: Text h_align = pixie.JUSTIFY_ALIGN

    Would be nice if add this alignment style, also give access to Arrangement attributes(selectionRects, lines, positions).

    I've made this little library for making this feature for me, it behaves like the Microsoft Word Office.

    import
        nimpy,
        pixie,
        unicode
    
    pyExportModule("pixie_utils")
    
    const
        LF = Rune(10)
        NR = Rune(0)
    
    proc justifyArrangement*(arrangement: Arrangement, maxWidth: float32) {.raises: [].} =
        proc right(rect: Rect): float32 =
            rect.x + rect.w
    
        let
            runes: ptr = arrangement.runes.addr
            positions: ptr = arrangement.positions.addr
            rects: ptr = arrangement.selectionRects.addr
            last_lineId: int = arrangement.lines.len-1
        var
            rune, last_rune: Rune
            last_wordRuneId: int
            spaces_idx: seq[int]
            inc_width, space_width, line_width, x_offset: float32
        
        for lineId, (start, stop) in arrangement.lines:
            last_rune = runes[stop]
    
            # This line must not be justified, if it is the last or if the last rune is a breakline char.
            if lineId == last_lineId or last_rune.uint32 == LF.uint32:
                continue
    
            echo runes[start..stop]
            # Get the spaces indexes of this line to increase their width, and get the line width.
            spaces_idx = @[]
            last_rune = NR
            for r_id in start..stop:
                rune = runes[r_id]
                if not rune.isWhiteSpace():
                    if last_rune.isWhiteSpace():
                        spaces_idx.add(r_id-1)
                    last_wordRuneId = r_id
                last_rune = runes[r_id]
    
            line_width = rects[last_wordRuneId].right
    
            echo "Line spaces: ", spaces_idx.len
            if spaces_idx.len > 0:
                # Get the amount of pixels/units to increase each space width in the middle of the line.
                inc_width = (maxWidth - line_width) / spaces_idx.len.float32
    
                if inc_width > 0:
                    space_width = rects[spaces_idx[0]].w + inc_width
    
                    # Adjust the runes X position
                    x_offset = 0
                    for r_id in spaces_idx[0]..stop:
                        positions[r_id].x += x_offset
    
                        if r_id in spaces_idx:
                            rects[r_id].x += x_offset
                            rects[r_id].w = space_width
                            x_offset += inc_width
                        else:
                            rects[r_id].x += x_offset
    
    proc justifyArrangement(arrangement_ref: int, maxWidth: float32) {.exportpy: "justifyArrangement".} =
        justifyArrangement(cast[Arrangement](arrangement_ref), maxWidth)
    
    opened by IagoBeuller 0
  • Request: image.to_bytes() function

    Request: image.to_bytes() function

    I need the bytes of the images, for example, use them in pillow or pygame.

    I've made this little library for making this feature for me, it gets the image data bytes as well the png file bytes.

    import
        nimpy,
        pixie
    
    pyExportModule("pixie_utils")
    
    proc getImageBytes*(image: Image, format: string = "png"): string {.raises: [PixieError].} =
      # Gets the bytes from image.
      let encodeFormat = case format:
        of "png": PngFormat
        of "bmp": BmpFormat
        of "jpg", "jpeg": JpegFormat
        of "qoi": QoiFormat
        of "ppm": PpmFormat
        else:
          raise newException(PixieError, "Unsupported image format")
    
      result = image.encodeImage(encodeFormat)
    
    proc getImageData*(image: Image): string {.raises: [].} =
      # Gets the image data as bytes.
      result = newString(image.width * image.height * 4)
      var
        i = 0
        rgba: ColorRGBA
      
      for color in image.data:
        rgba = color.rgba()
        result[i] = rgba.r.char
        result[i+1] = rgba.g.char
        result[i+2] = rgba.b.char
        result[i+3] = rgba.a.char
        i += 4
    
    proc getImageBytes(image_ref: int, format: string = "png"): string {.exportpy: "getImageBytes".} =
        result = getImageBytes(cast[Image](image_ref), format)
    
    proc getImageData(image_ref: int): string {.exportpy: "getImageData".} =
        result = getImageData(cast[Image](image_ref))
    
    opened by IagoBeuller 0
  • Can I do Image Mosaic Using this library?

    Can I do Image Mosaic Using this library?

    Hi,

    If I have known the related offset of translation and angle in pixels between centers of 2 images, can I use this library to generate a mosaic without explicitly considering allocating a big matrix matching to final image size, compensating for non-integer offset values, and converting the offset between image centers to left-up image origin?

    Now, I'm doing these trivial things. It's fragile and troublesome.

    opened by HikariS97 0
Releases(4.3.0)
  • 4.3.0(May 24, 2022)

    What's Changed

    • 4.3.0 by @guzba in https://github.com/treeform/pixie-python/pull/21

    Full Changelog: https://github.com/treeform/pixie-python/compare/4.0.1...4.3.0

    Source code(tar.gz)
    Source code(zip)
  • 4.0.1(Feb 23, 2022)

    What's Changed

    • 4.0.1 by @guzba in https://github.com/treeform/pixie-python/pull/18

    Full Changelog: https://github.com/treeform/pixie-python/compare/3.1.4...4.0.1

    Source code(tar.gz)
    Source code(zip)
  • 3.1.4(Feb 6, 2022)

    What's Changed

    • pixie 3.1.4 by @guzba in https://github.com/treeform/pixie-python/pull/16

    Full Changelog: https://github.com/treeform/pixie-python/compare/3.0.2...3.1.4

    Source code(tar.gz)
    Source code(zip)
  • 3.0.2(Oct 28, 2021)

    What's Changed

    • font.paint by @guzba in https://github.com/treeform/pixie-python/pull/14

    Full Changelog: https://github.com/treeform/pixie-python/compare/0.1.4...3.0.2

    Source code(tar.gz)
    Source code(zip)
Owner
treeform
I like the Nim programming language.
treeform
This is a implementation of CRAFT OCR method

This is a implementation of CRAFT OCR method

Esaka 0 Nov 01, 2021
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)

SEAM The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion. You can also download the repos

Hibercraft 459 Dec 26, 2022
Driver Drowsiness Detection with OpenCV & Dlib

In this project, we have built a driver drowsiness detection system that will detect if the eyes of the driver are close for too long and infer if the driver is sleepy or inactive.

Mansi Mishra 4 Oct 26, 2022
Code for AAAI 2021 paper: Sequential End-to-end Network for Efficient Person Search

This repository hosts the source code of our paper: [AAAI 2021]Sequential End-to-end Network for Efficient Person Search. SeqNet achieves the state-of

Zj Li 218 Dec 31, 2022
Text recognition (optical character recognition) with deep learning methods.

What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis | paper | training and evaluation data | failure cases and cle

Clova AI Research 3.2k Jan 04, 2023
Document manipulation detection with python

image manipulation detection task: -- tianchi function image segmentation salie

JiaKui Hu 3 Aug 22, 2022
Text layer for bio-image annotation.

napari-text-layer Napari text layer for bio-image annotation. Installation You can install using pip: pip install napari-text-layer Keybindings and m

6 Sep 29, 2022
YOLOv5 in DOTA with CSL_label.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)

YOLOv5_DOTA_OBB YOLOv5 in DOTA_OBB dataset with CSL_label.(Oriented Object Detection) Datasets and pretrained checkpoint Datasets : DOTA Pretrained Ch

1.1k Dec 30, 2022
Fine tuning keras-ocr python package with custom synthetic dataset from scratch

OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound

Eugene 1 Jan 05, 2022
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
question‘s area recognition using image processing and regular expression

======================================== Paper-Question-recognition ======================================== question‘s area recognition using image p

Yuta Mizuki 7 Dec 27, 2021
pulse2percept: A Python-based simulation framework for bionic vision

pulse2percept: A Python-based simulation framework for bionic vision Retinal degenerative diseases such as retinitis pigmentosa and macular degenerati

67 Dec 29, 2022
An official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

PyTorch implementation of Learning by Aligning (ICCV 2021) This is an official PyTorch implementation of the paper "Learning by Aligning: Visible-Infr

CV Lab @ Yonsei University 30 Nov 05, 2022
Library used to deskew a scanned document

Deskew //Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in

Stéphane Brunner 273 Jan 06, 2023
Pytorch implementation of PSEnet with Pyramid Attention Network as feature extractor

Scene Text-Spotting based on PSEnet+CRNN Pytorch implementation of an end to end Text-Spotter with a PSEnet text detector and CRNN text recognizer. We

azhar shaikh 62 Oct 10, 2022
Tesseract Open Source OCR Engine (main repository)

Tesseract OCR About This package contains an OCR engine - libtesseract and a command line program - tesseract. Tesseract 4 adds a new neural net (LSTM

48.4k Jan 09, 2023
Introduction to Augmented Reality (AR) with Python 3 and OpenCV 4.2.

Introduction to Augmented Reality (AR) with Python 3 and OpenCV 4.2.

fernanda rodríguez 85 Jan 02, 2023
Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:

RaVAEn The RaVÆn system We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variationa

SpaceML 35 Jan 05, 2023
Deskew is a command line tool for deskewing scanned text documents. It uses Hough transform to detect "text lines" in the image. As an output, you get an image rotated so that the lines are horizontal.

Deskew by Marek Mauder https://galfar.vevb.net/deskew https://github.com/galfar/deskew v1.30 2019-06-07 Overview Deskew is a command line tool for des

Marek Mauder 127 Dec 03, 2022
virtual mouse which can copy files, close tabs and many other features !

AI Virtual Mouse Controller Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip loca

Diwas Pandey 23 Oct 05, 2021