Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:

Related tags

Computer VisionRaVAEn
Overview

RaVAEn

Project sample The RaVÆn system
We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variational Auto-Encoders (VAEs) with the specific purpose of on-board deployment. It flags changed areas to prioritise for downlink, shortening the response time. We show that the proposed method outperforms pixel-wise baselines and we test it on resource-limited hardware. We also release the annotated dataset of extreme events. Work conducted at the FDL Europe 2021.

NeurIPS workshop papervideo from AI+HADR'21Quick Colab Example


Unsupervised Change Detection of Extreme Events Using ML On-Board

Flooding event example

Abstract: In this paper, we introduce RaVAEn, a lightweight, unsupervised approach for change detection in satellite data based on Variational Auto-Encoders (VAEs) with the specific purpose of on-board deployment. Applications such as disaster management enormously benefit from the rapid availability of satellite observations. Traditionally, data analysis is performed on the ground after all data is transferred - downlinked - to a ground station. Constraint on the downlink capabilities therefore affects any downstream application. In contrast, RaVAEn pre-processes the sampled data directly on the satellite and flags changed areas to prioritise for downlink, shortening the response time. We verified the efficacy of our system on a dataset composed of time series of catastrophic events - which we plan to release alongside this publication - demonstrating that RaVAEn outperforms pixel-wise baselines. Finally we tested our approach on resource-limited hardware for assessing computational and memory limitations.

Dataset

The full annotated dataset used for evaluation is hosted on Google Drive here. It contains 5 locations for each of the Landslide, Hurricane, Fire events and 4 locations for Floods events. For more details see the paper (we use the Sentinel-2 mission, level L1C data).

Map of the events

For dataset inspection use the prepared Colab Dataset Exploration demo .

Code examples

Install

# This will create a ravaen_env conda environment:
make requirements
conda activate ravaen_env
# Add these to open the prepared notebooks:
conda install nb_conda
jupyter notebook
# This will open an interactive notebook in your browser where you can navigate to the training or inference demo

Inference

To start using our model for inference, it's best to start with the prepared Colab Inference demo , which downloads our annotated dataset and evaluates a pre-trained model on a selected event type.

# Check possible parameters with:
!python3 -m scripts.evaluate_model --help 

# Example evaluation script used for the paper results for "small size" VAE model (remeber to adjust paths to the dataset and to the saved model checkpoints)
./bash/eval_run_papers_v3_VAE_128_D_small.sh

Training

For a fast demo on how to train these models on a custom folder of locations, check the Training demo as that presents an easy entry point to this repository. To reproduce the same training process as reported in the paper, you will need to download the whole WorldFloods dataset (see here) and prepare the same folder structure as we chose for the validation datasets.

# Check possible parameters with:
!python3 -m scripts.train_model --help

# Run the same training script used for the paper results for "small size" VAE model (remember to adjust the paths to the training datasets)
./bash/train_run_papers_v3_VAE_128_small_D.sh

Generality of the solution

Hurricane event example

Name "RaVAEn"

Our project is named after the two ravens in Norse mythology who are helping spirits of the god Odin and also highlights the usage of a Variational Auto-Encoder (VAE) as the main model:

Two ravens sit on his (Odin’s) shoulders and whisper all the news which they see and hear into his ear; they are called Huginn and Muninn. He sends them out in the morning to fly around the whole world, and by breakfast they are back again. Thus, he finds out many new things and this is why he is called ‘raven-god’ (hrafnaguð). (source)

Citation

If you find RaVAEn useful in your research, please consider citing the following paper:

@inproceedings{ravaen2021,
  title = {Unsupervised {Change} {Detection} of {Extreme} {Events} {Using} {ML} {On}-{Board}},
  url = {http://arxiv.org/abs/2111.02995},
  booktitle = {Artificial {Intelligence} for {Humanitarian} {Assistance} and {Disaster} {Response} {Workshop}, 35th {Conference} on {Neural} {Information} {Processing} {Systems} ({NeurIPS} 2021), {Vancouver}, {Canada}},
  author = {Růžička, Vít and Vaughan, Anna and De Martini, Daniele and Fulton, James and Salvatelli, Valentina and Bridges, Chris and Mateo-Garcia, Gonzalo and Zantedeschi, Valentina},
  month = nov,
  year = {2021},
  note = {arXiv: 2111.02995}
}
Owner
SpaceML
SpaceML
Regions sanitàries (RS), Sectors Sanitàris (SS) i Àrees Bàsiques de Salut (ABS) de Catalunya

Regions sanitàries (RS), Sectors Sanitaris (SS), Àrees de Gestió Assistencial (AGA) i Àrees Bàsiques de Salut (ABS) de Catalunya Fitxers GeoJSON de le

Glòria Macià Muñoz 2 Jan 23, 2022
question‘s area recognition using image processing and regular expression

======================================== Paper-Question-recognition ======================================== question‘s area recognition using image p

Yuta Mizuki 7 Dec 27, 2021
nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex.

faceprocessor nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex. Tech faceprocessor uses a number of open source projec

NoFaceDB 3 Sep 06, 2021
Scene text recognition

AttentionOCR for Arbitrary-Shaped Scene Text Recognition Introduction This is the ranked No.1 tensorflow based scene text spotting algorithm on ICDAR2

777 Jan 09, 2023
This is a implementation of CRAFT OCR method

This is a implementation of CRAFT OCR method

Esaka 0 Nov 01, 2021
Deskewing images with slanted content

skew_correction De-skewing images with slanted content by finding the deviation using Canny Edge Detection. To Run: In python 3.6, from deskew import

13 Aug 27, 2022
It is a image ocr tool using the Tesseract-OCR engine with the pytesseract package and has a GUI.

OCR-Tool It is a image ocr tool made in Python using the Tesseract-OCR engine with the pytesseract package and has a GUI. This is my second ever pytho

Khant Htet Aung 4 Jul 11, 2022
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022
Convert scans of handwritten notes to beautiful, compact PDFs

Convert scans of handwritten notes to beautiful, compact PDFs

Matt Zucker 4.8k Jan 01, 2023
Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Sign Language Recognition Service This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform s

Martin Lønne 1 Jan 08, 2022
Text page dewarping using a "cubic sheet" model

page_dewarp Page dewarping and thresholding using a "cubic sheet" model - see full writeup at https://mzucker.github.io/2016/08/15/page-dewarping.html

Matt Zucker 1.2k Dec 29, 2022
Demo processor to illustrate OCR-D Python API

ocrd_vandalize/ Demo processor to illustrate the OCR-D/core Python API Description :TODO: write docs :) Installation From PyPI pip3 install ocrd_vanda

Konstantin Baierer 5 May 05, 2022
LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

Murtaza Hassan 815 Dec 29, 2022
⛓ marc is a small, but flexible Markov chain generator

About marc (markov chain) is a small, but flexible Markov chain generator. Usage marc is easy to use. To build a MarkovChain pass the object a sequenc

Max Humber 65 Oct 27, 2022
Turn images of tables into CSV data. Detect tables from images and run OCR on the cells.

Table of Contents Overview Requirements Demo Modules Overview This python package contains modules to help with finding and extracting tabular data fr

Eric Ihli 311 Dec 24, 2022
Connect Aseprite to Blender for painting pixelart textures in real time

Pribambase Pribambase is a small tool that connects Aseprite and Blender, to allow painting with instant viewport feedback and all functionality of ex

117 Jan 03, 2023
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
OpenCVを用いたカメラキャリブレーションのサンプルです。2021/06/21時点でPython実装のある3種類(通常カメラ向け、魚眼レンズ向け(fisheyeモジュール)、全方位カメラ向け(omnidirモジュール))について用意しています。

OpenCV-CameraCalibration-Example FishEyeCameraCalibration.mp4 OpenCVを用いたカメラキャリブレーションのサンプルです 2021/06/21時点でPython実装のある以下3種類について用意しています。 通常カメラ向け 魚眼レンズ向け(

KazuhitoTakahashi 34 Nov 17, 2022
ERQA - Edge Restoration Quality Assessment

ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR, deblurring, denoising, etc) are restoring real details.

MSU Video Group 27 Dec 17, 2022
Automatically download multiple papers by keywords in CVPR

CVFPaperHelper Automatically download multiple papers by keywords in CVPR Install mkdir PapersToRead cd PaperToRead pip install requests tqdm git clon

46 Jun 08, 2022