Detect the mathematical formula from the given picture and the same formula is extracted and converted into the latex code

Overview

Mathematical formulae extractor

The goal of this project is to create a learning based system that takes an image of a math formula and returns corresponding LaTeX code.

output

Requirements

Model

  • PyTorch (tested on v1.9)
  • Python 3.7+ & dependencies (requirements.txt)
    pip install -r requirements.txt
    

Dataset

In order to render the math in many different fonts we use XeLaTeX, generate a PDF and finally convert it to a PNG. For the last step we need to use some third party tools:

Using the model

  1. Download/Clone this repository
  2. For now you need to install the Python dependencies specified in requirements.txt (look above)
  3. Download the weights.pth file from my Google Drive and place it in the checkpoints directory

Thanks to @katie-lim, you can use a nice user interface as a quick way to get the model prediction. Just call the GUI with python gui.py. From here you can take a screenshot and the predicted latex code is rendered using MathJax and copied to your clipboard.

If the model is unsure about the what's in the image it might output a different prediction every time you click "Retry". With the temperature parameter you can control this behavior (low temperature will produce the same result).

Alternatively you can use pix2tex.py with similar functionality as gui.py, only as command line tool. In this case you don't need to install PyQt5. Using this script you can also parse already existing images from the disk.

Note: As of right now it works best with images of smaller resolution. Don't zoom in all the way before taking a picture. Double check the result carefully. You can try to redo the prediction with an other resolution if the answer was wrong.

Update: I have trained an image classifier on randomly scaled images of the training data to predict the original size. This model will automatically resize the custom image to best resemble the training data and thus increase performance of images found in the wild. To use this preprocessing step, all you have to do is download the second weights file mentioned above. You should be able to take bigger (or smaller) images of the formula and still get a satisfying result

Project Architecture

In the project Architecture we have an encoder and decoder layers in which the mathematical formulae is detected from the given picture in the encoder layer which is a CNN layer and then the image is sent to the decoder layer which is an RNN layer the mathematical formulae is extracted from the picture and then the same is converted into the latex code in this layer

model_architecture

Training the model

  1. First we need to combine the images with their ground truth labels. I wrote a dataset class (which needs further improving) that saves the relative paths to the images with the LaTeX code they were rendered with. To generate the dataset pickle file run
python dataset/dataset.py --equations path_to_textfile --images path_to_images --tokenizer path_to_tokenizer --out dataset.pkl
  1. Edit the data entry in the config file to the newly generated .pkl file. Change other hyperparameters if you want to. See settings/default.yaml for a template.
  2. Now for the actual training run
python train.py --config path_to_config_file

Model

The model consist of a ViT [1] encoder with a ResNet backbone and a Transformer [2] decoder.

Performance

BLEU score normed edit distance
0.89 0.10

Data

We need paired data for the network to learn. Luckily there is a lot of LaTeX code on the internet, e.g. wikipedia, arXiv. We also use the formulae from the I2L-140k dataset.

Fonts

Latin Modern Math, GFSNeohellenicMath.otf, Asana Math, XITS Math, Cambria Math

Contribution

Contributions of any kind are welcome.

Acknowledgment

Code taken and modified from lucidrains, rwightman, im2markup, arxiv_leaks, pkra: Mathjax, harupy: snipping tool

MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition

MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition Python 2.7 Python 3.6 MORAN is a network with rectification mechanism for

Canjie Luo 595 Dec 27, 2022
Write-ups for the SwissHackingChallenge2021 CTF.

SwissHackingChallenge 2021 : Write-ups This repository contains a collection of my write-ups for challenges solved during the SwissHackingChallenge (S

Julien Béguin 3 Jun 07, 2021
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
Toolbox for OCR post-correction

Ochre Ochre is a toolbox for OCR post-correction. Please note that this software is experimental and very much a work in progress! Overview of OCR pos

National Library of the Netherlands / Research 117 Nov 10, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Deskew is a command line tool for deskewing scanned text documents. It uses Hough transform to detect "text lines" in the image. As an output, you get an image rotated so that the lines are horizontal.

Deskew by Marek Mauder https://galfar.vevb.net/deskew https://github.com/galfar/deskew v1.30 2019-06-07 Overview Deskew is a command line tool for des

Marek Mauder 127 Dec 03, 2022
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

Christian Bartz 496 Jan 05, 2023
fishington.io bot with OpenCV and NumPy

fishington.io-bot fishington.io bot with using OpenCV and NumPy bot can continue to fishing fully automatically how to use Open cmd in fishington.io-b

Bahadır Araz 77 Jan 02, 2023
Learning Camera Localization via Dense Scene Matching, CVPR2021

This repository contains code of our CVPR 2021 paper - "Learning Camera Localization via Dense Scene Matching" by Shitao Tang, Chengzhou Tang, Rui Hua

tangshitao 65 Dec 01, 2022
The code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Long-term Action Assessment".

Likert Scoring with Grade Decoupling for Long-term Action Assessment This is the code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Lon

10 Oct 21, 2022
Balabobapy - Using artificial intelligence algorithms to continue the text

Balabobapy - Using artificial intelligence algorithms to continue the text

qxtony 1 Feb 04, 2022
📷 Face Recognition using Haar-Cascade Classifier, OpenCV, and Python

Face-Recognition-System Face Recognition using Haar-Cascade Classifier, OpenCV and Python. This project is based on face detection and face recognitio

1 Jan 10, 2022
OCR software for recognition of handwritten text

Handwriting OCR The project tries to create software for recognition of a handwritten text from photos (also for Czech language). It uses computer vis

Břetislav Hájek 562 Jan 03, 2023
Generates a message from the infamous Jerma Impostor image

Generate your very own jerma sus imposter message. Modes: Default Mode: Only supports the characters " ", !, a, b, c, d, e, h, i, m, n, o, p, q, r, s,

Giorno420 1 Oct 27, 2022
Text page dewarping using a "cubic sheet" model

page_dewarp Page dewarping and thresholding using a "cubic sheet" model - see full writeup at https://mzucker.github.io/2016/08/15/page-dewarping.html

Matt Zucker 1.2k Dec 29, 2022
Introduction to image processing, most used and popular functions of OpenCV

👀 OpenCV 101 Introduction to image processing, most used and popular functions of OpenCV go here.

Vusal Ismayilov 3 Jul 02, 2022
BoxToolBox is a simple python application built around the openCV library

BoxToolBox is a simple python application built around the openCV library. It is not a full featured application to guide you through the w

František Horínek 1 Nov 12, 2021
Handwritten Character Recognition using CNN

Handwritten Character Recognition using CNN Problem Definition The main objective of this project is to solve the problem of handwritten character rec

Mohit Kaushik 4 Mar 02, 2022
Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that slide and lock together.

Fusion-360-Add-In-PuzzleSpline Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that sli

Michiel van Wessem 1 Nov 15, 2021
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 185 Jan 01, 2023