Captcha Recognition

Overview

Captcha Recognition

Problem Definition

CAPTCHA (Completely Automated Public Turing Test to tell Computers and Humans Apart) is an automated test created to prevent websites from being repeatedly accessed by an automatic program in a short period of time and wasting network resources. Among all the CAPTCHAs, commonly used types contain low resolution, deformed characters with character adhesions and background noise, which the user must read and type correctly into an input box. This is a relatively simple task for humans, taking an average of 10 seconds to solve, but it presents a difficulty for computers, because such noise makes it difficult for a program to differentiate the characters from them. The main objective of this project is to recognize the target numbers in the captcha images correctly.

The mainstream CAPTCHA is based on visual representation, including images such as letters and text. Traditional CAPTCHA recognition includes three steps: image pre-processing, character segmentation, and character recognition. Traditional methods have generalization capabilities and robustness for different types of CAPTCHA. The stickiness is poor. As a kind of deep neural network, convolutional neural network has shown excellent performance in the field of image recognition, and it is much better than traditional machine learning methods. Compared with traditional methods, the main advantage of CNN lies in the convolutional layer in which the extracted image features have strong expressive ability, avoiding the problems of data pre-processing and artificial design features in traditional recognition technology. Although CNN has achieved certain results, the recognition effect of complex CAPTCHA is insufficient

Dataset

The dataset contains CAPTCHA images. The images are 5 letter words, and have noise applied (blur and a line). They are of size 200 x 50. The file name is same as the image letters.
Link for the dataset: https://www.kaggle.com/fournierp/captcha-version-2-images

image

Image Pre-Processing

Three transformations have been applied to the data:

  1. Adaptive Thresholding
  2. Morphological transformations
  3. Gaussian blurring

Adaptive Thresholding

Thresholding is the process of converting a grayscale image to a binary image (an image that contains only black and white pixels). This process is explained in the steps below: • A threshold value is determined according to the requirements (Say 128). • The pixels of the grayscale image with values greater than the threshold (>128) are replaced with pixels of maximum pixel value(255). • The pixels of the grayscale image with values lesser than the threshold (<128) are replaced with pixels of minimum pixel value(0). But this method doesn’t perform well on all images, especially when the image has different lighting conditions in different areas. In such cases, we go for adaptive thresholding. In adaptive thresholding the threshold value for each pixel is determined individually based on a small region around it. Thus we get different thresholds for different regions of the image and so this method performs well on images with varying illumination.

The steps involved in calculating the pixel value for each of the pixels in the thresholded image are as follows: • The threshold value T(x,y) is calculated by taking the mean of the blockSize×blockSize neighborhood of (x,y) and subtracting it by C (Constant subtracted from the mean or weighted mean). • Then depending on the threshold type passed, either one of the following operations in the below image is performed:

image

OpenCV provides us the adaptive threshold function to perform adaptive thresholding : Thres_img=cv.adaptiveThreshold ( src, maxValue, adaptiveMethod, thresholdType, blockSize, C) Image after applying adaptive thresholding :

image

Morphological Transformations

Morphological transformations are some simple operations based on the image shape. It is normally performed on binary images. Two basic morphological operators are Erosion and Dilation. Then its variant forms like Opening, Closing, Gradient etc also comes into play. For this project I have used its variant form closing, closing is a dilation followed by an erosion. As the name suggests, a closing is used to close holes inside of objects or for connecting components together. An erosion in an image “erodes” the foreground object and makes it smaller. A foreground pixel in the input image will be kept only if all pixels inside the structuring element are > 0. Otherwise, the pixels are set to 0 (i.e., background). Erosion is useful for removing small blobs in an image or disconnecting two connected objects. The opposite of an erosion is a dilation. Just like an erosion will eat away at the foreground pixels, a dilation will grow the foreground pixels. Dilations increase the size of foreground objects and are especially useful for joining broken parts of an image together. Performing the closing operation is again accomplished by making a call to cv2.morphologyEx, but this time we are going to indicate that our morphological operation is a closing by specifying the cv2.MORPH_CLOSE. Image after applying morphological transformation:

image

Gaussian Blurring

Gaussian smoothing is used to remove noise that approximately follows a Gaussian distribution. The end result is that our image is less blurred, but more “naturally blurred,” than using the average in average blurring. Furthermore, based on this weighting we’ll be able to preserve more of the edges in our image as compared to average smoothing. Gaussian blurring is similar to average blurring, but instead of using a simple mean, we are now using a weighted mean, where neighbourhood pixels that are closer to the central pixel contribute more “weight” to the average. Gaussian smoothing uses a kernel of M X N, where both M and N are odd integers. Image after applying Gaussian blurring:

image

After applying all these image pre-processing techniques, images have been converted into n-dimension array

image

Further 2 more transformations have been applied on this n-dimensional array. The pixel values initially range from 0-255. They are first brought to 0-1 range by dividing all pixel values by 255. Then, they are normalized. Then, the data is shuffled and splitted into training and validation sets. Since the number of samples is not big enough and in deep learning we need large amounts of data and in some cases it is not feasible to collect thousands or millions of images, so data augmentation comes to the rescue. Data Augmentation is a technique that can be used to artificially expand the size of a training set by creating modified data from the existing one. It is a good practice to use data augmentation if you want to prevent overfitting, or the initial dataset is too small to train on, or even if you want to squeeze better performance from your model. In general, data augmentation is frequently used when building a deep learning model. To augment images when using Keras as our deep learning framework we can use ImageDataGenerator (tf.keras.preprocessing.image.ImageDataGenerator) that generates batches of tensor images with real-time data augmentation.

image

image

Testing

A helper function has been made to test the model on test data in which image pre-processing and transformations have been applied to get the final output

image

Result

The model achieves:

  1. Accuracy = 89.13%
  2. Precision = 91%
  3. Recall = 90%
  4. F1-score= 90%

Below is the full report:

image

Owner
Mohit Kaushik
Mohit Kaushik
A facial recognition program that plays a alarm (mp3 file) when a person i seen in the room. A basic theif using Python and OpenCV

Home-Security-Demo A facial recognition program that plays a alarm (mp3 file) when a person is seen in the room. A basic theif using Python and OpenCV

SysKey 4 Nov 02, 2021
textspotter - An End-to-End TextSpotter with Explicit Alignment and Attention

An End-to-End TextSpotter with Explicit Alignment and Attention This is initially described in our CVPR 2018 paper. Getting Started Installation Clone

Tong He 323 Nov 10, 2022
A simple OCR API server, seriously easy to be deployed by Docker, on Heroku as well

ocrserver Simple OCR server, as a small working sample for gosseract. Try now here https://ocr-example.herokuapp.com/, and deploy your own now. Deploy

Hiromu OCHIAI 541 Dec 28, 2022
MXNet OCR implementation. Including text recognition and detection.

insightocr Text Recognition Accuracy on Chinese dataset by caffe-ocr Network LSTM 4x1 Pooling Gray Test Acc SimpleNet N Y Y 99.37% SE-ResNet34 N Y Y 9

Deep Insight 99 Nov 01, 2022
Vietnamese Language Detection and Recognition

Table of Content Introduction (Khôi viết) Dataset (đổi link thui thành 3k5 ảnh mình) Getting Started (An Viết) Requirements Usage Example Training & E

6 May 27, 2022
An interactive document scanner built in Python using OpenCV

The scanner takes a poorly scanned image, finds the corners of the document, applies the perspective transformation to get a top-down view of the document, sharpens the image, and applies an adaptive

Kushal Shingote 1 Feb 12, 2022
Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Total-Text-Dataset (Official site) Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.) Update

Chee Seng Chan 671 Dec 27, 2022
WACV 2022 Paper - Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching

Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching Code based on our WACV 2022 Accepted Paper: https://arxiv.org/pdf/

Andres 13 Dec 17, 2022
Volume Control using OpenCV

Gesture-Volume-Control Volume Control using OpenCV Here i made volume control using Python and OpenCV in which we can control the volume of our laptop

Mudit Sinha 3 Oct 10, 2021
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 02, 2023
Pre-Recognize Library - library with algorithms for improving OCR quality.

PRLib - Pre-Recognition Library. The main aim of the library - prepare image for recogntion. Image processing can really help to improve recognition q

Alex 80 Dec 30, 2022
graph learning code for ogb

The final code for OGB Installation Requirements: ogb=1.3.1 torch=1.7.0 torch-geometric=1.7.0 torch-scatter=2.0.6 torch-sparse=0.6.9 Baseline models T

PierreHao 20 Nov 10, 2022
Virtual Zoom Gesture using OpenCV

Virtual_Zoom_Gesture I have created a virtual zoom gesture where we can Zoom in and Zoom out any image and even we can move that image anywhere on the

Mudit Sinha 2 Dec 26, 2021
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
✌️Using this you can control your PC/Laptop volume by Hand Gestures created with Python.

Hand Gesture Volume Controller ✋ Hand recognition 👆 Finger recognition 🔊 you can decrease and increase volume Demo Code Firstly I have created a Mod

Abbas Ataei 19 Nov 17, 2022
Generate text images for training deep learning ocr model

New version release:https://github.com/oh-my-ocr/text_renderer Text Renderer Generate text images for training deep learning OCR model (e.g. CRNN). Su

Qing 1.2k Jan 04, 2023
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Repository for playing the computer vision apps: People analytics on Raspberry Pi.

play-with-torch Repository for playing the computer vision apps: People analytics on Raspberry Pi. Tools Tested Hardware RasberryPi 4 Model B here, RA

eMHa 1 Sep 23, 2021
Indonesian ID Card OCR using tesseract OCR

KTP OCR Indonesian ID Card OCR using tesseract OCR KTP OCR is python-flask with tesseract web application to convert Indonesian ID Card to text / JSON

Revan Muhammad Dafa 5 Dec 06, 2021