Repository for playing the computer vision apps: People analytics on Raspberry Pi.

Overview

Hits contributions welcome GitHub contributors GitHub last commit GitHub top language GitHub language count GitHub repo size GitHub code size in bytes LinkedIn

play-with-torch

Repository for playing the computer vision apps: People analytics on Raspberry Pi.

Tools

Tested Hardware

  • RasberryPi 4 Model B here, RAM: 4 GB and Processor 4-core @ 1.5 GHz
  • microSD Card 64 GB
  • 5M USB Retractable Clip 120 Degrees WebCam Web Wide-angle Camera Laptop U7 Mini or Raspi Camera

Tested Software

  • Ubuntu Desktop 20.10 aarch64 64 bit, install on RasberriPi 4
  • PyTorch: torch 1.6.0 aarch64 and torchvision 0.7.0 aarch64
  • Python min. ver. 3.6 (3.8 recommended)

Install the prerequisites

  • Install packages
$ sudo apt install build-essential make cmake git python3-pip libatlas-base-dev
$ sudo apt install libssl-dev
$ sudo apt install libopenblas-dev libblas-dev m4 python3-yaml
$ sudo apt install libomp-dev
  • make swap space to 2048 MB
$ free -h
$ sudo swapoff -a
$ sudo dd if=/dev/zero of=/swapfile bs=1M count=2048
$ sudo mkswap /swapfile
$ sudo swapon /swapfile
$ free -h
  • Install torch 1.6.0
$ pip3 install torch-1.6.0a0+b31f58d-cp38-cp38-linux_aarch64.whl

Folder Structure

play-with-torch/
├── config/
│    ├── config.json - holds configuration for training
│    └── parse_config.py - class to handle config file and cli options
│
├── docker/
│   ├── Dockerfile
│   └── requirements.txt
│
├── data/ - default directory for storing input data
│
├── docs/ - for documentation
│   └── play-with-torch.tex
│
├── models/ - models, losses, and metrics
│   ├── model.py
│   ├── metric.py
│   └── loss.py
│
├── samples/
│
├── saved/
│   ├── checkpoints/
│   ├── traced_model/
│   ├── models/ - trained models are saved here
│   └── logs/ - default logdir for tensorboard and logging output
│
├── site
├── templates/ - for serving model on Flask
│   └── index.html
├── tests/
├── utils/ - small utility functions
│   ├── data/
│   └── ...
│
├── inference.py - main script to inference model
├── README.md
├── trace_model.py - main script to convert model
└── train.py - main script to start training  

Usage

Run inference

$ git clone https://github.com/mheriyanto/play-with-torch.git
$ cd play-with-torch/
$ python3 inference.py video --config config/nanodet-m.yml --model saved/models/nanodet_m.ckpt --path video.mp4

Convert model

$ python3 trace_model.py --cfg_path config/nanodet-m.yml --model_path saved/models/nanodet_m.ckpt --input_shape 320,320

Training

$ python3 train.py config/nanodet_custom_xml_dataset.yml

TO DO

  • Implement Unit-Test: Test-Driven Development (TDD)

Credit to

Reference

  • NanoDet: Super fast and lightweight anchor-free object detection model. here
  • Yunjey Choi - PyTorch Tutorial for Deep Learning Researchers here
  • Victor Huang - PyTorch Template Project (here)
Owner
eMHa
Sharing is caring. "What I can't create I don't understand".
eMHa
Assignment work with webcam

work with webcam : Press key 1 to use emojy on your face Press key 2 to use lip and eye on your face Press key 3 to checkered your face Press key 4 to

Hanane Kheirandish 2 May 31, 2022
Code for CVPR'2022 paper ✨ "Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-Language Model"

PPE ✨ Repository for our CVPR'2022 paper: Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-

Zipeng Xu 34 Nov 28, 2022
OCR engine for all the languages

Description kraken is a turn-key OCR system optimized for historical and non-Latin script material. kraken's main features are: Fully trainable layout

431 Jan 04, 2023
Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.

Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless. This is the official Roboflow python package that interfaces with the Roboflow API.

Roboflow 52 Dec 23, 2022
The Open Source Framework for Machine Vision

SimpleCV Quick Links: About Installation [Docker] (#docker) Ubuntu Virtual Environment Arch Linux Fedora MacOS Windows Raspberry Pi SimpleCV Shell Vid

Sight Machine 2.6k Dec 31, 2022
Steve Tu 71 Dec 30, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
Papers, Datasets, Algorithms, SOTA for STR. Long-time Maintaining

Scene Text Recognition Recommendations Everythin about Scene Text Recognition SOTA • Papers • Datasets • Code Contents 1. Papers 2. Datasets 2.1 Synth

Deep Learning and Vision Computing Lab, SCUT 197 Jan 05, 2023
Contextual speed detection for python

Speed Prediction using Optical Flow and 2D CNN About the challenge: Comma.AI Speed Challenge This challenge was developed by Comma.AI to predict the s

Mahimana Bhatt 2 Dec 16, 2021
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
Open Source Computer Vision Library

OpenCV: Open Source Computer Vision Library Resources Homepage: https://opencv.org Courses: https://opencv.org/courses Docs: https://docs.opencv.org/m

OpenCV 65.7k Jan 03, 2023
Official PyTorch implementation for "Mixed supervision for surface-defect detection: from weakly to fully supervised learning"

Mixed supervision for surface-defect detection: from weakly to fully supervised learning [Computers in Industry 2021] Official PyTorch implementation

ViCoS Lab 169 Dec 30, 2022
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
a micro OCR network with 0.07mb params.

MicroOCR a micro OCR network with 0.07mb params. Layer (type) Output Shape Param # Conv2d-1 [-1, 64, 8,

william 29 Aug 06, 2022
Generates a message from the infamous Jerma Impostor image

Generate your very own jerma sus imposter message. Modes: Default Mode: Only supports the characters " ", !, a, b, c, d, e, h, i, m, n, o, p, q, r, s,

Giorno420 1 Oct 27, 2022
基于Paddle框架的PSENet复现

PSENet-Paddle 基于Paddle框架的PSENet复现 本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 AIStudio链接 参考项目: whai362-PSENet 环境配置 本项目

QuanHao Guo 4 Apr 24, 2022
Deskew is a command line tool for deskewing scanned text documents. It uses Hough transform to detect "text lines" in the image. As an output, you get an image rotated so that the lines are horizontal.

Deskew by Marek Mauder https://galfar.vevb.net/deskew https://github.com/galfar/deskew v1.30 2019-06-07 Overview Deskew is a command line tool for des

Marek Mauder 127 Dec 03, 2022
TextBoxes re-implement using tensorflow

TextBoxes-TensorFlow TextBoxes re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modified ba

Gu Xiaodong 44 Dec 29, 2022
CRAFT-Pyotorch:Character Region Awareness for Text Detection Reimplementation for Pytorch

CRAFT-Reimplementation Note:If you have any problems, please comment. Or you can join us weChat group. The QR code will update in issues #49 . Reimple

453 Dec 28, 2022