[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Overview

Grounded Situation Recognition with Transformers

Paper | Model Checkpoint

  • This is the official PyTorch implementation of Grounded Situation Recognition with Transformers (BMVC 2021).
  • GSRTR (Grounded Situation Recognition TRansformer) achieves state of the art in all evaluation metrics on the SWiG benchmark.
  • This repository contains instructions, code and model checkpoint.

Overview

Grounded Situation Recognition (GSR) is the task that not only classifies a salient action (verb), but also predicts entities (nouns) associated with semantic roles and their locations in the given image. Inspired by the remarkable success of Transformers in vision tasks, we propose a GSR model based on a Transformer encoder-decoder architecture. The attention mechanism of our model enables accurate verb classification by capturing high-level semantic feature of an image effectively, and allows the model to flexibly deal with the complicated and image-dependent relations between entities for improved noun classification and localization. Our model is the first Transformer architecture for GSR, and achieves the state of the art in every evaluation metric on the SWiG benchmark.

model

GSRTR mainly consists of two components: Transformer Encoder for verb prediction, and Transformer Decoder for grounded noun prediction. For details, please see Grounded Situation Recognition with Transformers by Junhyeong Cho, Youngseok Yoon, Hyeonjun Lee and Suha Kwak.

Environment Setup

We provide instructions for environment setup.

# Clone this repository and navigate into the repository
git clone https://github.com/jhcho99/gsrtr.git    
cd gsrtr                                          

# Create a conda environment, activate the environment and install PyTorch via conda
conda create --name gsrtr python=3.9              
conda activate gsrtr                             
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge 

# Install requirements via pip
pip install -r requirements.txt                   

SWiG Dataset

Annotations are given in JSON format, and annotation files are under "SWiG/SWiG_jsons/" directory. Images can be downloaded here. Please download the images and store them in "SWiG/images_512/" directory.

SWiG_Image In the SWiG dataset, each image is associated with Verb, Frame and Groundings.

A) Verb: each image is paired with a verb. In the annotation file, "verb" denotes the salient action for an image.

B) Frame: a frame denotes the set of semantic roles for a verb. For example, the frame for verb "Catching" denotes the set of semantic roles "Agent", "Caught Item", "Tool" and "Place". In the annotation file, "frames" show the set of semantic roles for a verb, and noun annotations for each role. There are three noun annotations for each role, which are given by three different annotators.

C) Groundings: each grounding is described in [x1, y1, x2, y2] format. In the annotation file, "bb" denotes groundings for roles. Note that nouns can be labeled without groundings, e.g., in the case of occluded objects. When there is no grounding for a role, [-1, -1, -1, -1] is given.

# an example of annotation for an image

"catching_175.jpg": {
    "verb": "catching",
    "height": 512, 
    "width": 910,
    "bb": {"tool": [-1, -1, -1, -1], 
           "caughtitem": [444, 169, 671, 317], 
           "place": [-1, -1, -1, -1], 
           "agent": [270, 112, 909, 389]},
    "frames": [{"tool": "n05282433", "caughtitem": "n02190166", "place": "n03991062", "agent": "n00017222"}, 
               {"tool": "n05302499", "caughtitem": "n02190166", "place": "n03990474", "agent": "n00017222"}, 
               {"tool": "n07655505", "caughtitem": "n13152742", "place": "n00017222", "agent": "n02190166"}]
    }

In imsitu_space.json file, there is additional information for verb and noun.

# an example of additional verb information

"catching": {
    "framenet": "Getting", 
    "abstract": "an AGENT catches a CAUGHTITEM with a TOOL at a PLACE", 
    "def": "capture a sought out item", 
    "order": ["agent", "caughtitem", "tool", "place"], 
    "roles": {"tool": {"framenet": "manner", "def": "The object used to do the catch action"}, 
              "caughtitem": {"framenet": "theme", "def": "The entity being caught"}, 
              "place": {"framenet": "place", "def": "The location where the catch event is happening"}, 
              "agent": {"framenet": "recipient", "def": "The entity doing the catch action"}}
    }
# an example of additional noun information

"n00017222": {
    "gloss": ["plant", "flora", "plant life"], 
    "def": "(botany) a living organism lacking the power of locomotion"
    }

Additional Details

  • All images should be under "SWiG/images_512/" directory.
  • train.json file is for train set.
  • dev.json file is for development set.
  • test.json file is for test set.

Training

To train GSRTR on a single node with 4 gpus for 40 epochs, run:

python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py \
           --backbone resnet50 --batch_size 16 --dataset_file swig --epochs 40 \
           --num_workers 4 --enc_layers 6 --dec_layers 6 --dropout 0.15 --hidden_dim 512 \
           --output_dir gsrtr

To train GSRTR on a Slurm cluster with submitit using 4 TITAN Xp gpus for 40 epochs, run:

python run_with_submitit.py --ngpus 4 --nodes 1 --job_dir gsrtr \
        --backbone resnet50 --batch_size 16 --dataset_file swig --epochs 40 \
        --num_workers 4 --enc_layers 6 --dec_layers 6 --dropout 0.15 --hidden_dim 512 \
        --partition titanxp
  • A single epoch takes about 30 minutes. 40 epoch training takes around 20 hours on a single machine with 4 TITAN Xp gpus.
  • We use AdamW optimizer with learning rate 10-4 (10-5 for backbone), weight decay 10-4 and β = (0.9, 0.999).
  • Random Color Jittering, Random Gray Scaling, Random Scaling and Random Horizontal Flipping are used for augmentation.

Inference

To run an inference on a custom image, run:

python inference.py --image_path inference/filename.jpg \
                    --saved_model gsrtr_checkpoint.pth \
                    --output_dir inference
  • Model checkpoint can be downloaded here.

Here is an example of inference result: inference_result

Acknowledgements

Our code is modified and adapted from these amazing repositories:

Contact

Junhyeong Cho ([email protected])

Citation

If you find our work useful for your research, please cite our paper:

@InProceedings{cho2021gsrtr,
    title={Grounded Situation Recognition with Transformers},
    author={Junhyeong Cho and Youngseok Yoon and Hyeonjun Lee and Suha Kwak},
    booktitle={British Machine Vision Conference (BMVC)},
    year={2021}
}

License

GSRTR is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Owner
Junhyeong Cho
Student at POSTECH | Studied at Stanford, UIUC and UC Berkeley
Junhyeong Cho
A python screen recorder for low-end computers, provides high quality video output.

RecorderX - v1.0 A screen recorder made in Python with the help of OpenCv, it has ability to record your screen in high quality. No matter what your P

Priyanshu Jindal 4 Nov 10, 2021
Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc.

EasyOCR Ready-to-use OCR with 80+ languages supported including Chinese, Japanese, Korean and Thai. What's new 1 February 2021 - Version 1.2.3 Add set

Jaided AI 16.7k Jan 03, 2023
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 06, 2023
A Python script to capture images from multiple webcams at once and save them into your local machine

Capturing multiple images at once from Webcam Using OpenCV Capture multiple image by accessing the webcam of your system and save it to your machine.

Fazal ur Rehman 2 Apr 16, 2022
keras复现场景文本检测网络CPTN: 《Detecting Text in Natural Image with Connectionist Text Proposal Network》;欢迎试用,关注,并反馈问题...

keras-ctpn [TOC] 说明 预测 训练 例子 4.1 ICDAR2015 4.1.1 带侧边细化 4.1.2 不带带侧边细化 4.1.3 做数据增广-水平翻转 4.2 ICDAR2017 4.3 其它数据集 toDoList 总结 说明 本工程是keras实现的CPTN: Detecti

mick.yi 107 Jan 09, 2023
[ICCV, 2021] Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks

Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks This is an official PyTorch code repository of the paper "Cloud Transformers:

Visual Understanding Lab @ Samsung AI Center Moscow 27 Dec 15, 2022
graph learning code for ogb

The final code for OGB Installation Requirements: ogb=1.3.1 torch=1.7.0 torch-geometric=1.7.0 torch-scatter=2.0.6 torch-sparse=0.6.9 Baseline models T

PierreHao 20 Nov 10, 2022
TextBoxes++: A Single-Shot Oriented Scene Text Detector

TextBoxes++: A Single-Shot Oriented Scene Text Detector Introduction This is an application for scene text detection (TextBoxes++) and recognition (CR

Minghui Liao 930 Jan 04, 2023
A simple component to display annotated text in Streamlit apps.

Annotated Text Component for Streamlit A simple component to display annotated text in Streamlit apps. For example: Installation First install Streaml

Thiago Teixeira 312 Dec 30, 2022
Can We Find Neurons that Cause Unrealistic Images in Deep Generative Networks?

Can We Find Neurons that Cause Unrealistic Images in Deep Generative Networks? Artifact Detection/Correction - Offcial PyTorch Implementation This rep

CHOI HWAN IL 23 Dec 20, 2022
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 6 Sep 19, 2022
This tool will help you convert your text to handwriting xD

So your teacher asked you to upload written assignments? Hate writing assigments? This tool will help you convert your text to handwriting xD

Saurabh Daware 4.2k Jan 07, 2023
Document Image Dewarping

Document image dewarping using text-lines and line Segments Abstract Conventional text-line based document dewarping methods have problems when handli

Taeho Kil 268 Dec 23, 2022
Converts an image into funny, smaller amongus characters

SussyImage Converts an image into funny, smaller amongus characters Demo Mona Lisa | Lona Misa (Made up of AmongUs characters) API I've also added an

Dhravya Shah 14 Aug 18, 2022
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera.

Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip location is mapped to RGB images to control the mouse cursor.

Ravi Sharma 71 Dec 20, 2022
Amazing 3D explosion animation using Pygame module.

3D Explosion Animation 💣 💥 🔥 Amazing explosion animation with Pygame. 💣 Explosion physics An Explosion instance is made of a set of Particle objec

Dylan Tintenfich 12 Mar 11, 2022
Random maze generator and solver

Maze Generator and Solver I wrote a maze generator that works with two commonly known algorithms: Depth First Search and Randomized Prims. Both of the

Daniel Pérez 10 Sep 23, 2022
3点クリックで円を指定し、極座標変換を行うサンプルプログラム

click-warpPolar 3点クリックで円を指定し、極座標変換を行うサンプルプログラムです。 Requirements OpenCV 3.4.2 or Later Usage 実行方法は以下です。 起動後、マウスで3点をクリックし円を指定してください。 python click-warpPol

KazuhitoTakahashi 17 Dec 30, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 04, 2023